Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (9): 1508-1515    DOI: 10.16511/j.cnki.qhdxxb.2022.21.026
  机械工程 本期目录 | 过刊浏览 | 高级检索 |
面向仓储物流的平面索并联机器人视觉自标定方法
李政清1, 侯森浩1, 韦金昊1, 唐晓强1,2,3
1. 清华大学 机械工程系, 北京 100084;
2. 清华大学 摩擦学国家重点实验室, 北京 100084;
3. 清华大学 精密超精密制造装备及控制北京市重点实验室, 北京 100084
Vision-based auto-calibration method for planar cable-driven parallel robot for warehouse and logistics tasks
LI Zhengqing1, HOU Senhao1, WEI Jinhao1, TANG Xiaoqiang1,2,3
1. Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China;
2. State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China;
3. Beijing Key Laboratory of Precision/Ultra-Precision Manufacturing Equipment and Control, Tsinghua University, Beijing 100084, China
全文: PDF(7463 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 针对用于物流仓储领域的平面四索并联机器人,提出一种基于视觉定位的自标定方法。通过相机和货架上的AprilTag获取末端动平台的位置,进行模型参数辨识和误差补偿,实现平面四索并联机器人的几何参数快速标定。首先,建立该四索并联机器人的运动学模型;然后,提出基于该机器人构型的运动学参数标定方法及位姿测量方法;最后,通过计算机仿真和实验验证该标定方法的有效性。实验结果表明,该标定方法能够快速实现末端动平台的运动学标定,达到小于1 mm的定位精度,满足仓储堆垛任务的定位误差要求。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李政清
侯森浩
韦金昊
唐晓强
关键词 索驱动机器人并联机构仓储物流运动学标定    
Abstract:An auto-calibration method was developed for planar four-cable parallel robots based on visual measurements. The end-effector pose is obtained using a camera fixed on the end-effector that measures the pose of AprilTags on storage racks. Geometric parameter identification and error compensation are then used for rapid calibration of the planar four-cable parallel robot. The system model is based on a kinematics model of the planar four-cable parallel robot for storage and logistics tasks. Then, the kinematics calibration method is used with the pose measuring method to calibrate the robot. The calibration accuracy was verified using both computer simulations and tests. The results show that this rapid calibration method provides positioning accuracy of less than 1 mm, which meets the accuracy requirement for the storage and stacking tasks.
Key wordscable-driven robot    parallel mechanism    warehouse and logistics    kinematics calibration
收稿日期: 2022-03-31      出版日期: 2022-08-18
基金资助:唐晓强,教授,E-mail:tang-xq@tsinghua.edu.cn
引用本文:   
李政清, 侯森浩, 韦金昊, 唐晓强. 面向仓储物流的平面索并联机器人视觉自标定方法[J]. 清华大学学报(自然科学版), 2022, 62(9): 1508-1515.
LI Zhengqing, HOU Senhao, WEI Jinhao, TANG Xiaoqiang. Vision-based auto-calibration method for planar cable-driven parallel robot for warehouse and logistics tasks. Journal of Tsinghua University(Science and Technology), 2022, 62(9): 1508-1515.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2022.21.026  或          http://jst.tsinghuajournals.com/CN/Y2022/V62/I9/1508
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] 张飞, 张彬, 周烽, 等. 面向自动仓储的绳索牵引并联机器人构型选择与参数优化[J]. 机械工程学报, 2020, 56(1): 1-8. ZHANG F, ZHANG B, ZHOU F, et al. Configuration selection and parameter optimization of redundantly actuated cable-driven parallel robots[J]. Journal of Mechanical Engineering, 2020, 56(1): 1-8. (in Chinese)
[2] TANG X Q. An overview of the development for cable-driven parallel manipulator[J]. Advances in Mechanical Engineering, 2014, 2014: 823028.
[3] RAMADAN M, SALAH B, NOCHE B. Innovative estimating travel time model for dual-command cycle time of Stewart-Gough platform in automated storage/retrieval systems[C]//ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Chicago, USA: ASME, 2012: 737-743.
[4] BRUCKMANN T, STURM C, FEHLBERG L, et al. An energy-efficient wire-based storage and retrieval system[C]//2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Wollongong, Australia: IEEE, 2013: 631-636.
[5] LAU D. Initial length and pose calibration for cable-driven parallel robots with relative length feedback[C]//3rd International Conference on Cable-Driven Parallel Robots (CableCon). Cham, Switzerland: Springer, 2018: 140-151.
[6] MAJARENA A C, SANTOLARIA J, SAMPER D, et al. An overview of kinematic and calibration models using internal/external sensors or constraints to improve the behavior of spatial parallel mechanisms[J]. Sensors, 2010, 10(11): 10256-10297.
[7] YUAN H, YOU X H, ZHANG Y Q, et al. A novel calibration algorithm for cable-driven parallel robots with application to rehabilitation[J]. Applied Sciences, 2019, 9(11): 2182.
[8] 郑亚青. 6自由度绳牵引并联机构的运动学参数标定[J]. 华侨大学学报(自然科学版), 2006, 27(2): 184-188. ZHENG Y Q. Kinematic calibration of 6-DOF wire-driven parallel manipulators[J]. Journal of Huaqiao University (Natural Science), 2006, 27(2): 184-188. (in Chinese)
[9] GARCíA-VANEGAS A, LIBERATO-TAFUR B, FORERO M G, et al. Automatic vision based calibration system for planar cable-driven parallel robots[M]//MANUEL G F, BRHAYAN L T, ANDRES G V, et al. Pattern recognition and image analysis. Cham: Springer, 2019: 600-609.
[10] 黄田, 汪劲松, CHETWYND D G, 等. 并联构型装备几何参数可辨识性研究[J]. 机械工程学报, 2002, 38(S1): 1-6. HUANG T, WANG J S, CHETWYND D G, et al. Investigation into the identifiability of geometric parameters of pkm systems using a subset of pose error measurements[J]. Chinese Journal of Mechanical Engineering, 2002, 38(S1): 1-6. (in Chinese)
[11] VARZIRI M S, NOTASH L. Kinematic calibration of a wire-actuated parallel robot[J]. Mechanism and Machine Theory, 2007, 42(8): 960-976.
[12] ZHENG T J, WANG Y, YANG G L, et al. Self-calibration method for two DOF cable-driven joint module[C]//Recent Trends in Intelligent Computing, Communication and Devices: Proceedings of ICCD 2018. Guangzhou, China: Springer, 2020: 983-991.
[13] LOU Y N, LIN H Y, QUAN P K, et al. Self-calibration for the general cable-driven serial manipulator with multi-segment cables[J]. Electronics, 2021, 10(4): 444.
[14] MIERMEISTER P, POTT A. Auto calibration method for cable-driven parallel robots using force sensors[M]//LENARCIC J, HUSTY M. Latest advances in robot kinematics. Dordrecht: Springer, 2012: 269-276.
[15] JIN X J, JUNG J, KO S Y, et al. Geometric parameter calibration for a cable-driven parallel robot based on a single one-dimensional laser distance sensor measurement and experimental modeling[J]. Sensors, 2018, 18(7): 2392.
[16] OLSON E. AprilTag: A robust and flexible visual fiducial system[C]//2011 IEEE International Conference on Robotics and Automation. Shanghai, China: IEEE, 2011: 3400-3407.
[17] XU W F, YAN P H, WANG F X, et al. Vision-based simultaneous measurement of manipulator configuration and target pose for an intelligent cable-driven robot[J]. Mechanical Systems and Signal Processing, 2022, 165: 108347.
[18] 路红亮. 机器视觉中相机标定方法的研究[D]. 沈阳: 沈阳工业大学, 2013. LU H L. Camera calibration method for machine vision[D]. Shenyang: Shenyang University of Technology, 2013. (in Chinese)
[19] ZHANG F, SHANG W W, LI G J, et al. Calibration of geometric parameters and error compensation of non-geometric parameters for cable-driven parallel robots[J]. Mechatronics, 2021, 77: 102595.
[20] ZHANG Z K, XIE G Q, SHAO Z F, et al. Kinematic calibration of cable-driven parallel robots considering the pulley kinematics[J]. Mechanism and Machine Theory, 2022, 169: 104648.
[1] 彭发忠, 段金昊, 邵珠峰, 张兆坤, 王道明. 索驱动TBot及Delta高速并联机器人的性能对比分析[J]. 清华大学学报(自然科学版), 2021, 61(3): 183-192.
[2] 王煜天,丘嘉豪,吴军,张彬彬. 一种新型数控机床可靠性试验加载机构动力学评价方法[J]. 清华大学学报(自然科学版), 2020, 60(12): 1023-1029.
[3] 于振洋, 吴军, 张彬彬. 一种并联式太阳能聚光器二轴跟踪机构能量消耗[J]. 清华大学学报(自然科学版), 2019, 59(4): 284-290.
[4] 胡从军, 于广, 王立平. 基于3P(4R)S主轴头的五轴混联机床的参数辨识算法[J]. 清华大学学报(自然科学版), 2019, 59(12): 1029-1038.
[5] 王潇剑, 吴军, 岳义, 许允斗. 2UPU/SP 3自由度并联机构的动力学性能评价[J]. 清华大学学报(自然科学版), 2019, 59(10): 838-846.
[6] 张彬彬, 王立平, 吴军. 3自由度并联机构的动力学各向同性评价方法[J]. 清华大学学报(自然科学版), 2017, 57(8): 803-809.
[7] 于广, 王立平, 吴军, 王冬. 3自由度并联主轴头的动力学建模及动态特性[J]. 清华大学学报(自然科学版), 2017, 57(12): 1317-1323.
[8] 刘宇哲, 吴军, 王立平, 汪劲松. 5轴混联机床运动学标定的测量轨迹评价及误差补偿[J]. 清华大学学报(自然科学版), 2016, 56(10): 1047-1054.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
    PDF Preview
    
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn