Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2023, Vol. 63 Issue (1): 146-152    DOI: 10.16511/j.cnki.qhdxxb.2022.21.029
  公共安全 本期目录 | 过刊浏览 | 高级检索 |
基于级联CNN的疏散场景中人群数量估计模型
邓青1,2, 张博3, 李宜豪2, 周亮1,2, 周正青1,2, 蒋慧灵1,4, 高扬5,6
1. 北京科技大学 大安全科学研究院, 北京 100083;
2. 北京科技大学 土木与资源工程学院, 北京 100083;
3. 陕西省西安市消防救援支队, 西安 710000;
4. 北京科技大学 金属冶炼重大事故防控技术支撑基地, 北京 100083;
5. 清华大学 工程物理系, 公共安全研究院, 北京 100084;
6. 中国人民警察大学 智慧警务学院, 廊坊 065000
Crowd counting model for evacuation scenarios based on a cascaded CNN
DENG Qing1,2, ZHANG Bo3, LI Yihao2, ZHOU Liang1,2, ZHOU Zhengqing1,2, JIANG Huiling1,4, GAO Yang5,6
1. Research Institute of Macro-Safety Science, University of Science and Technology Beijing, Beijing 100083, China;
2. School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China;
3. Xi'an Fire Rescue Detachment, Xi'an 710000, China;
4. Technical Support Center for Prevention and Control of Disastrous Accidents in Metal Smelting, University of Science and Technology Beijing, Beijing 100083, China;
5. Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University, Beijing 100084, China;
6. School of Intelligence Policing, China People's Police University, Langfang 065000, China
全文: PDF(8355 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 对疏散场景中的人员数量进行准确估计,能为疏散路径的实时优化和应急资源的调度提供决策支持。为了获取疏散通道上不同区域的人员数量,该文在对已有方法分析和总结的基础上,通过设置分类情况和人员密度层级相联,建立了基于级联卷积神经网络(CNN)的人员数量估计模型,可有效避免卷积过程中部分图像信息丢失及过拟合的产生。通过学习图像中人员数量、位置随着图像特征变化的关系,可估计疏散通道上实时监控画面中人员数量。基于PyTorch深度学习平台开发,模型最终在验证集(612张图像)和测试集(182张图像)上的识别准确度分别为84.2%和83.6%,说明该模型可以比较准确地估计监控画面中的疏散人员数量。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邓青
张博
李宜豪
周亮
周正青
蒋慧灵
高扬
关键词 人群数量估计疏散通道级联卷积神经网络图像识别    
Abstract:Accurate crowd counts during evacuations can support real-time optimization of evacuation routes and scheduling of emergency resources. This study estimates the number of occupants in an evacuation passageway by setting a classification level and personnel density together in a cascaded convolutional neural network (CNN) crowd counting model based on analyses of existing methods. The method avoids the loss of image information and over fitting in the convolution process. The model estimates the real-time crowd count in crowded situations by learning the relationship between the number and the position of occupants in the image and by changing the image features. The model was implemented on the PyTorch platform with an identification accuracy for the validation set (612 photos) of 84.2% and for the test set (182 photos) of 83.6%, which shows that this method can accurately predict the number of evacuees in a monitoring screen.
Key wordscrowd count    evacuation exit    cascaded convolutional neural network    image recognition
收稿日期: 2022-03-10      出版日期: 2023-01-11
基金资助:蒋慧灵,教授,E-mail:87398930@qq.com;高扬,讲师,E-mail:gaoyang17@mails.tsinghua.edu.cn
引用本文:   
邓青, 张博, 李宜豪, 周亮, 周正青, 蒋慧灵, 高扬. 基于级联CNN的疏散场景中人群数量估计模型[J]. 清华大学学报(自然科学版), 2023, 63(1): 146-152.
DENG Qing, ZHANG Bo, LI Yihao, ZHOU Liang, ZHOU Zhengqing, JIANG Huiling, GAO Yang. Crowd counting model for evacuation scenarios based on a cascaded CNN. Journal of Tsinghua University(Science and Technology), 2023, 63(1): 146-152.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2022.21.029  或          http://jst.tsinghuajournals.com/CN/Y2023/V63/I1/146
  
  
  
  
  
  
[1] FAN Z Z, ZHANG H, ZHANG Z, et al. A survey of crowd counting and density estimation based on convolutional neural network[J]. Neurocomputing, 2022, 472: 224-251.
[2] BHANGALE U, PATIL S, VISHWANATH V, et al. Near real-time crowd counting using deep learning approach[J]. Procedia Computer Science, 2020, 171: 770-779.
[3] 吕伟, 李承旭, 马亚萍. 基于GIS位置分配的城市应急避难场所责任区划分[J]. 清华大学学报(自然科学版), 2022, 62(6): 1102-1109. LV W, LI C X, MA Y P. Division of responsibility areas for urban emergency shelters based on a GIS location-allocation analysis[J]. Journal of Tsinghua University (Science and Technology), 2022, 62(6): 1102-1109. (in Chinese)
[4] CHEN J Y, XIU S, CHEN X, et al. Flounder-Net: An efficient CNN for crowd counting by aerial photography[J]. Neurocomputing, 2021, 420: 82-89.
[5] ZHANG L, SHI M J, CHEN Q B. Crowd counting via scale-adaptive convolutional neural network[C]// Proceedings of 2018 IEEE Winter Conference on Applications of Computer Vision. Lake Tahoe, USA: IEEE, 2018: 1113-1121.
[6] LESANI A, NATEGHINIA E, MIRANDA-MORENO L F. Development and evaluation of a real-time pedestrian counting system for high-volume conditions based on 2D LiDAR[J]. Transportation Research Part C: Emerging Technologies, 2020, 114: 20-35.
[7] MA R, LI L, HUANG W, et al. On pixel count based crowd density estimation for visual surveillance[C]// Proceedings of IEEE Conference on Cybernetics and Intelligent Systems, 2004. Singapore: IEEE, 2004: 170-173.
[8] CHAN A B, LIANG Z S J, VASCONCELOS N. Privacy preserving crowd monitoring: Counting people without people models or tracking[C]// Proceedings of 2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, USA: IEEE, 2008: 1-7.
[9] WU X Y, LIANG G Y, LEE K K, et al. Crowd density estimation using texture analysis and learning[C]// Proceedings of 2006 IEEE International Conference on Robotics and Biomimetics. Kunming, China: IEEE, 2006: 214-219.
[10] CHAN A B, VASCONCELOS N. Counting people with low-level features and Bayesian regression[J]. IEEE Transactions on Image Processing, 2012, 21(4): 2160-2177.
[11] MARANA A N, COSTA L F, LOTUFO R A, et al. On the efficacy of texture analysis for crowd monitoring[C]// Proceedings SIBGRAPI'98. International Symposium on Computer Graphics, Image Processing, and Vision. Rio de Janeiro, Brazil: IEEE, 1998: 354-361.
[12] FU M, XU P, LI X D, et al. Fast crowd density estimation with convolutional neural networks[J]. Engineering Applications of Artificial Intelligence, 2015, 43: 81-88.
[13] JIANG G Q, WU R, HUO Z Q, et al. LigMSANet: Lightweight multi-scale adaptive convolutional neural network for dense crowd counting[J]. Expert Systems with Applications, 2022, 197: 116662.
[14] ZHANG Y Y, ZHOU D S, CHEN S Q, et al. Single-image crowd counting via multi-column convolutional neural network[C]// Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE, 2016: 589-597.
[15] HUO Z Q, LU B, MI A Z, et al. Learning multi-level features to improve crowd counting[J]. IEEE Access, 2020, 8: 211391-211400.
[16] GAO J Y, WANG Q, LI X L. PCC Net: Perspective crowd counting via spatial convolutional network[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(10): 3486-3498.
[17] CHEN Y, HU S J, MAO H, et al. Application of the best evacuation model of deep learning in the design of public structures[J]. Image and Vision Computing, 2020, 102: 103975.
[18] RUBY A U, THEERTHAGIRI P, JACOB I J, et al. Binary cross entropy with deep learning technique for image classification[J]. International Journal of Advanced Trends in Computer Science and Engineering, 2020, 9(4): 5393-5397.
[19]邓青, 马晔风, 刘艺, 等. 基于BP神经网络的微博转发量的预测[J]. 清华大学学报(自然科学版), 2015, 55(12): 1342-1347. DENG Q, MA Y F, LIU Y, et al. Prediction of retweet counts by a back propagation neural network[J]. Journal of Tsinghua University (Science and Technology), 2015, 55(12): 1342-1347. (in Chinese)
[1] 刘琼, 李宗贤, 孙富春, 田永鸿, 曾炜. 基于深度信念卷积神经网络的图像识别与分类[J]. 清华大学学报(自然科学版), 2018, 58(9): 781-787.
[2] 谢颖, 杨向东, 芮晓飞, 任书楠, 陈恳. 圆柱透视投影轮廓的隐式方程描述和拟合方法[J]. 清华大学学报(自然科学版), 2016, 56(6): 640-645.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn