Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2023, Vol. 63 Issue (1): 78-93    DOI: 10.16511/j.cnki.qhdxxb.2022.21.031
  电机工程 本期目录 | 过刊浏览 | 高级检索 |
变流器组网多时间尺度特性及其模型分细度仿真应用
张树卿1, 唐绍普1, 于思奇1, 卢洵2, 张东辉3
1. 清华大学 电机工程与应用电子技术系, 电力系统及大型发电设备安全控制和仿真国家重点实验室, 北京 100084;
2. 广东电网有限责任公司, 广州 510030;
3. 清华四川能源互联网研究院, 成都 610213
Multiple time scale characteristics of converter network and simulation application of its different fineness models
ZHANG Shuqing1, TANG Shaopu1, YU Siqi1, LU Xun2, ZHANG Donghui3
1. State Key Laboratory of Control and Simulation of Power System and Generation Equipment, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China;
2. Guangdong Power Grid Co. Ltd., Guangzhou 510030, China;
3. Tsinghua-Sichuan Energy Internet Research Institute, Chengdu 610213, China
全文: PDF(11210 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 多变流器并网、组网运行和控制涉及宽时间尺度过程,新形态的动态和稳定问题也随之出现,仿真技术常被用于上述问题的研究。然而不同细度模型的功能、性能和适应性存在差异,仿真前应根据需要研究或体现的物理过程或现象评估被仿真过程蕴含的时间尺度,并选用合适细度的模型。该文总结、评述了含多变流器电网仿真技术研究、应用现状和发展趋势,以常规多电平电压源变流器(VSC)和模块化多电平变流器(MMC)为例,分析变流器组网与控制共性特征,基于主电路和控制各环节响应时间特性,分析变流器组网多时间尺度动态特性及时间尺度划分,讨论变流器模型细度与仿真需求、主导物理过程时间尺度匹配问题,总结4种常见细度变流器模型的适应性及其在电力系统场景下的应用,并以仿真测试验证了变流器组网时间尺度分析的正确性,直观给出了不同细度模型和仿真的适应性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张树卿
唐绍普
于思奇
卢洵
张东辉
关键词 变流器组网变流器控制多时间尺度模型细度电磁暂态仿真    
Abstract:Multiple converter grid connections, network operations and controls involve a wide range of time scales that lead to many types of dynamics and stability problems. Simulations are often used to research these problems. However, the simulation capabilities and adaptability depend on the model fineness. Therefore, simulations should consider the time scales covered or reflected the physical processes or phenomenon to be studied to select the appropriate fineness model. This paper summarizes the research, applications and development trends of power grid simulations with multiple converters. The common characteristics of converter networking and control are analyzed for one system with a conventional multi-level voltage source converter (VSC) and one system with a modular multi-level converter (MMC) as examples. The response time characteristics of the main circuit and the control links are analyzed to determine the multiple time scale dynamics and time scale divisions of the converter networking. This paper analyzes the matching between the converter model fineness, the simulation requirements and the time scale of the dominant physical process. Simulations show the adaptability of four common fineness converter models, their applications to power systems, and the accuracy of the converter networking time scale analysis. The results also show adaptability of various fineness models and simulations.
Key wordsconverter networking    converter control    multiple time scales    model fineness    electromagnetic simulations
收稿日期: 2022-04-11      出版日期: 2023-01-11
基金资助:卢洵,高级工程师,E-mail:9119184@qq.com
引用本文:   
张树卿, 唐绍普, 于思奇, 卢洵, 张东辉. 变流器组网多时间尺度特性及其模型分细度仿真应用[J]. 清华大学学报(自然科学版), 2023, 63(1): 78-93.
ZHANG Shuqing, TANG Shaopu, YU Siqi, LU Xun, ZHANG Donghui. Multiple time scale characteristics of converter network and simulation application of its different fineness models. Journal of Tsinghua University(Science and Technology), 2023, 63(1): 78-93.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2022.21.031  或          http://jst.tsinghuajournals.com/CN/Y2023/V63/I1/78
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] 朱蜀, 刘开培, 秦亮, 等. 电力电子化电力系统暂态稳定性分析综述[J]. 中国电机工程学报, 2017, 37(14): 3948-3962. ZHU S, LIU K P, QIN L, et al. Analysis of transient stability of power electronics dominated power system: An overview [J]. Proceedings of the CSEE, 2017, 37(14): 3948-3962. (in Chinese)
[2] 姜齐荣, 王亮, 谢小荣. 电力电子化电力系统的振荡问题及其抑制措施研究[J]. 高电压技术, 2017, 43(4): 1057-1066. JIANG Q R, WANG L, XIE X R. Study on oscillations of power-electronized power system and their mitigation schemes [J]. High Voltage Engineering, 2017, 43(4): 1057-1066. (in Chinese)
[3] 袁小明, 程时杰, 胡家兵. 电力电子化电力系统多尺度电压功角动态稳定问题[J]. 中国电机工程学报, 2016, 36(19): 5145-5154. YUAN X M, CHENG S J, HU J B. Multi-time scale voltage and power angle dynamics in power electronics dominated large power systems [J]. Proceedings of the CSEE, 2016, 36(19): 5145-5154. (in Chinese)
[4] 舒德兀. 交直流系统多速率仿真建模与接口技术研究[D]. 北京: 清华大学, 2018. SHU D W. Research on multi-rate simulation modeling and interfacing for AC/DC grids [D]. Beijing: Tsinghua University, 2018. (in Chinese)
[5] 曾辉, 孙峰, 李铁, 等. 澳大利亚“9·28”大停电事故分析及对中国启示[J]. 电力系统自动化, 2017, 41(13): 1-6. ZENG H, SUN F, LI T, et al. Analysis of "9·28" blackout in South Australia and its enlightenment to China [J]. Automation of Electric Power Systems, 2017, 41(13): 1-6. (in Chinese)
[6] 孙华东, 许涛, 郭强, 等. 英国“8·9”大停电事故分析及对中国电网的启示[J]. 中国电机工程学报, 2019, 39(21): 6183-6192. SUN H D, XU T, GUO Q, et al. Analysis on blackout in great britain power grid on August 9th, 2019 and its enlightenment to power grid in China [J]. Proceedings of the CSEE, 2019, 39(21): 6183-6192. (in Chinese)
[7] NVIDIA. NVIDIA TESLA [EB/OL]. (2012) [2022-07-29]. http://www.nvidia.cn/object/tesla-supercomputing-solutions-cn.html.
[8] 董毅峰, 王彦良, 韩佶, 等. 电力系统高效电磁暂态仿真技术综述[J]. 中国电机工程学报, 2018, 38(8): 2213-2231. DONG Y F, WANG Y L, HAN J, et al. Review of high efficiency digital electromagnetic transient simulation technology in power system [J]. Proceedings of the CSEE, 2018, 38(8): 2213-2231. (in Chinese)
[9] 丁承第. 基于FPGA的有源配电网实时仿真方法研究[D]. 天津: 天津大学, 2014. DING C D. FPGA-based real-time simulation for active distribution system [D]. Tianjin: Tianjin University, 2014. (in Chinese)
[10] ZHU Y N, ZHANG S Q, YU S Q, et al. Interface displacement and dynamic phasor mapping equivalence based hybrid simulation for HVAC/DC power grids [J]. IEEE Transactions on Power Delivery, 2021, 36(4): 1932-1942.
[11] 苏思敏. 基于混合积分法的电力系统暂态稳定时域仿真[J]. 电力系统保护与控制, 2008, 36(15): 56-59. SU S M. A mixed integral method of time domain simulation for power system [J]. Power System Protection and Control, 2008, 36(15): 56-59. (in Chinese)
[12] 王成山, 彭克, 李琰, 等. 一种适用于分布式发电系统的显式—隐式混合积分算法[J]. 电力系统自动化, 2011, 35(19): 28-32. WANG C S, PENG K, LI Y, et al. An explicit-implicit hybrid integration algorithm for distributed generation systems [J]. Automation of Electric Power Systems, 2011, 35(19): 28-32. (in Chinese)
[13] MAGUIRE T, GIESBRECHT J. Small time-step (< 2μSec) VSC model for the real time digital simulator [C]// Internetional Comference on Power System Transients. Montreal, Canada: IPST, 2005: 1-6.
[14] AGORRETA J L, BORREGA M, LóPEZ J, et al. Modeling and control of N-paralleled grid-connected inverters with LCL filter coupled due to grid impedance in PV plants [J]. IEEE Transactions on Power Electronics, 2011, 26(3): 770-785.
[15] ABRAMOVITZ A. An approach to average modeling and simulation of switch-mode systems [J]. IEEE Transactions on Education, 2011, 54(3): 509-517.
[16] CHINIFOROOSH S, JATSKEVICH J, YAZDANI A, et al. Definitions and applications of dynamic average models for analysis of power systems [J]. IEEE Transactions on Power Delivery, 2010, 25(4): 2655-2669.
[17] YAZDANI A, IRAVANI R. A generalized state-space averaged model of the three-level NPC converter for systematic DC-voltage-balancer and current-controller design [J]. IEEE Transactions on Power Delivery, 2005, 20(2): 1105-1114.
[18] 邓皓, 崔双喜, 孙彦萍, 等. 孤岛微网中风光储混合建模及仿真研究[J]. 高压电器, 2019, 55(10): 141-147. DENG H, CUI S X, SUN Y P, et al. Study on modeling and simulation of the Wind/PV/Storage hybrid in islanding micro-grid system [J]. High Voltage Apparatus, 2019, 55(10): 141-147. (in Chinese)
[19] 林子豪. 大型光伏电站等值建模与电压控制研究[D]. 合肥: 合肥工业大学, 2020. LIN Z H. Research on equivalent modeling and voltage control of large photovoltaic power plant [D]. Hefei: Hefei University of Technology, 2020. (in Chinese)
[20] 何叶. 双馈风电场/光伏电站的等值建模[D]. 合肥: 合肥工业大学, 2018. HE Y. Equivalence modeling of double-fed wind farm and photovoltaic power plant [D]. Hefei: Hefei University of Technology, 2018. (in Chinese)
[21] 钱峰, 皮杰, 刘俊磊, 等. 微电网建模与控制理论综述[J]. 武汉大学学报(工学版), 2020, 53(12): 1044-1054. QIAN F, PI J, LIU J L, et al. Review of microgrid modeling and control theory [J]. Engineering Journal of Wuhan University, 2020, 53(12): 1044-1054. (in Chinese)
[22] 唐亚南, 叶华, 裴玮, 等. MMC-MTDC系统的电磁—机电暂态建模与实时仿真分析[J]. 电力自动化设备, 2019, 39(11): 99-106. TANG Y N, YE H, PEI W, et al. Electromagnetic- electromechanical transient modeling and real-time simulation analysis of MMC-MTDC system [J]. Electric Power Automation Equipment, 2019, 39(11): 99-106. (in Chinese)
[23] 熊华强, 杨程祥, 马亮, 等. 含分层接入特高压直流的交直流混联电网机电—电磁暂态混合仿真研究[J]. 电力系统保护与控制, 2020, 48(24): 145-153. XIONG H Q, YANG C X, MA L, et al. Electromechanical- electromagnetic transient hybrid simulation of an AC/DC hybrid power grid with UHVDC hierarchical connection mode [J]. Power System Protection and Control, 2020, 48(24): 145-153. (in Chinese)
[24] 陈国平, 李柏青, 李明节, 等. 新一代特高压交直流电网仿真平台设计方案[J]. 电网技术, 2021, 45(8): 3228-3237. CHEN G P, LI B Q, LI M J, et al. New generation UHVAC/DC power grid simulation platform design scheme [J]. Power System Technology, 2021, 45(8): 3228-3237. (in Chinese)
[25] 艾欣, 金鹏, 韩晓男, 等. 基于平均值模型的微电网建模及仿真分析[J]. 现代电力, 2013, 30(5): 1-6. AI X, JIN P, HAN X N, et al. Modeling and simulation of microgrid based on average model [J]. Modern Electric Power, 2013, 30(5): 1-6. (in Chinese)
[26] GUO X Q, LU Z G, WANG B C, et al. Dynamic phasors-based modeling and stability analysis of droop- controlled inverters for microgrid applications [J]. IEEE Transactions on Smart Grid, 2014, 5(6): 2980-2987.
[27] YU S Q, ZHANG S Q, HAN Y D, et al. A pulse-source-pair-based AC/DC interactive simulation approach for multiple-VSC grids [J]. IEEE Transactions on Power Delivery, 2021, 36(2): 508-521.
[28] 易姝娴, 袁立强, 李凯, 等. 面向区域电能路由器的高效仿真建模方法[J]. 清华大学学报(自然科学版), 2019, 59(10): 796-806. YI S X, YUAN L Q, LI K, et al. High-efficiency modeling method for regional energy routers [J]. Journal of Tsinghua University (Science and Technology), 2019, 59(10): 796-806. (in Chinese)
[29] MARTÍ J R, DOMMEL H W, BONATTO B D, et al. Shifted frequency analysis (SFA) concepts for EMTP modelling and simulation of power system dynamics [C]//Proceedings of the 2014 Power Systems Computation Conference. Wroclaw, Poland: IEEE, 2014: 1-8.
[30] 姚蜀军, 韩民晓, 黄闻而达. 基于时间尺度变换的大步长电磁暂态仿真[J]. 中国电机工程学报, 2019, 39(2): 436-446. YAO S J, HAN M X, HUANG W E D. A large time step electromagnetic transients simulation based on time-scale-frame transformation [J]. Proceedings of the CSEE, 2019, 39(2): 436-446. (in Chinese)
[31] 杨鹏, 刘锋, 姜齐荣, 等. “双高”电力系统大扰动稳定性: 问题、 挑战与展望[J]. 清华大学学报(自然科学版), 2021, 61(5): 403-414. YANG P, LIU F, JIANG Q R, et al. Large-disturbance stability of power systems with high penetration of renewables and inverters: Phenomena, challenges, and perspectives [J]. Journal of Tsinghua University (Science and Technology), 2021, 61(5): 403-414. (in Chinese)
[32] 胡家兵, 袁小明, 程时杰. 电力电子并网装备多尺度切换控制与电力电子化电力系统多尺度暂态问题[J]. 中国电机工程学报, 2019, 39(18): 5457-5467. HU J B, YUAN X M, CHENG S J. Multi-time scale transients in power-electronized power systems considering multi-time scale switching control schemes of power electronics apparatus [J]. Proceedings of the CSEE, 2019, 39(18): 5457-5467. (in Chinese)
[33] LU L Q, BRYANT A, HUDGINS J L, et al. Physics-based model of planar-gate IGBT including MOS side two-dimensional effects [J]. IEEE Transactions on Industry Applications, 2010, 46(6): 2556-2567.
[34] PARMA G, DINAVAHI V. Real-time digital hardware simulation of power electronics and drives [C]//2007 IEEE Power Engineering Society General Meeting. Tampa, FL, USA: IEEE, 2007: 1235-1246.
[35] WASTON N, ARRILLAGA J. Power systems electromagnetic transients simulation [M]. London: IET, 2003.
[36] 林俐, 潘险险. 基于分裂层次半监督谱聚类算法的风电场机群划分方法[J]. 电力自动化设备, 2015, 35(2): 8-14. LIN L, PAN X X. Wind turbine grouping based on semi-supervised split-hierarchical spectral clustering algorithm for wind farm [J]. Electric Power Automation Equipment, 2015, 35(2): 8-14. (in Chinese)
[37] 崔晓丹, 李威, 李兆伟, 等. 适用于机电暂态仿真的大型光伏电站在线动态等值方法[J]. 电力系统自动化, 2015, 39(12): 21-26. CUI X D, LI W, LI Z W, et al. An online dynamic equivalent method for large-scale photovoltaic power plant suitable for electromechanical transient stability simulation [J]. Automation of Electric Power Systems, 2015, 39(12): 21-26. (in Chinese)
[38] 张树卿, 童陆园, 郭琦, 等. SMRT交直分网混合实时仿真接口关键技术与实现[J]. 南方电网技术, 2015, 9(1): 39-46. ZHANG S Q, TONG L Y, GUO Q, et al. Key techniques and implementation of SMRT hybrid real-time simulation employing AC/DC partitioning scheme [J]. Southern Power System Technology, 2015, 9(1): 39-46. (in Chinese)
[39] WANG X Z, CHIANG H D. Some issues with quasi-steady state model in long-term stability [C]//2013 IEEE Power and Energy Society General Meeting. Vancouver, Canada: IEEE, 2013: 1-5.
[40] 王庆平. 电力系统动态全过程自适应仿真的研究[D]. 天津: 天津大学, 2002. WANG Q P. Research on self-adaptive simulation of power system whole dynamic process [D]. Tianjin: Tianjin University, 2002. (in Chinese)
[41] AN Q T, SUN L Z, ZHAO K, et al. Switching function model-based fast-diagnostic method of open-switch faults in inverters without sensors [J]. IEEE Transactions on Power Electronics, 2011, 26(1): 119-126.
[42] DU W, LASSETER R H, KHALSA A S. Survivability of autonomous microgrid during overload events [J]. IEEE Transactions on Smart Grid, 2019, 10(4): 3515-3524.
[43] POGAKU N, PRODANOVIC M, GREEN T C. Modeling, analysis and testing of autonomous operation of an inverter-based microgrid [J]. IEEE Transactions on Power Electronics, 2007, 22(2): 613-625.
[44] 吕志鹏, 盛万兴, 钟庆昌, 等. 虚拟同步发电机及其在微电网中的应用[J]. 中国电机工程学报, 2014, 34(16): 2591-2603. LV Z P, SHENG W X, ZHONG Q C, et al. Virtual synchronous generator and its applications in micro-grid [J]. Proceedings of the CSEE, 2014, 34(16): 2591-2603. (in Chinese)
[45] HOKE A F, NELSON A A, TAN J, et al. The frequency-watt function: simulation and testing for the Hawaiian electric companies [R]. Golden, CO: National Renewable Energy Laboratory (NREL), 2017.
[46] DU W, JIANG Q R, ERICKSON M J, et al. Voltage-source control of PV inverter in a CERTS microgrid [J]. IEEE Transactions on Power Delivery, 2014, 29(4): 1726-1734.
[47] 刘华坤. 基于频域阻抗网络模型的风电次同步振荡分析与控制[D]. 北京: 清华大学, 2018. LIU H K. Frequency-domain impedance network model based analysis and control of subsynchronous oscillation in wind-intergrated power systems [D]. Beijing: Tsinghua University, 2018. (in Chinese)
[48] 徐政, 肖晃庆, 张哲任, 等. 柔性直流输电系统[M]. 2版. 北京: 机械工业出版社, 2017. XU Z, XIAO H Q, ZHANG Z R, et al. Flexible DC transmission system [M]. 2nd ed. Beijing: Machinery Industry Press, 2017. (in Chinese)
[49] 姜齐荣, 赵崇滨. 并网逆变器的电磁暂态同步稳定问题[J]. 清华大学学报(自然科学版), 2021, 61(5): 415-428. JIANG Q R, ZHAO C B. Electromagnetic transient synchronization stability with grid-connected inverters [J]. Journal of Tsinghua University (Science and Technology), 2021, 61(5): 415-428. (in Chinese)
[50] 汪春江. 并网逆变器多时间尺度建模及稳定性分析[D]. 武汉: 武汉大学, 2020. WANG C J. Multi time scale modeling and stability analysis of grid connected inverter [D]. Wuhan: Wuhan University, 2020. (in Chinese)
[51] 袁豪. 风电机组直流电压控制尺度的幅相运动方程建模及其稳定性分析应用[D]. 武汉: 华中科技大学, 2018. YUAN H. Modeling of wind turbines based on amplitude-phase motion equation method in DC-link voltage control timescale and its applications in power system stability analysis [D]. Wuhan: Huazhong University of Science and Technology, 2018. (in Chinese)
[52] DU W, CHEN Z, SCHNEIDER K P, et al. A comparative study of two widely used grid-forming droop controls on microgrid small-signal stability [J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8(2): 963-975.
[53] 许建中, 赵成勇, GOLE A M. 模块化多电平换流器戴维南等效整体建模方法[J]. 中国电机工程学报, 2015, 35(8): 1919-1929. XU J Z, ZHAO C Y, GOLE A M. Research on the Thévenin's Equivalent based Integral Modelling Method of the Modular Multilevel Converter (MMC) [J]. Proceedings of the CSEE, 2015, 35(8): 1919-1929. (in Chinese)
[54] 刘志文, 林智莘, 周治国, 等. 电压源换流器实时多速率仿真研究[J]. 高电压技术, 2015, 41(7): 2362-2369. LIU Z W, LIN Z X, ZHOU Z G, et al. Research on real-time multi-rate simulation of voltage source converters [J]. High Voltage Engineering, 2015, 41(7): 2362-2369. (in Chinese)
[55] 许建中. 模块化多电平换流器电磁暂态高效建模方法研究[D]. 北京: 华北电力大学, 2014. XU J Z. Research on the electromagnetic transient efficient modelling method of modular multilevel converter [D]. Beijing: North China Electric Power University, 2014. (in Chinese)
[56] 戚庆茹, 焦连伟, 陈寿孙, 等. 运用动态相量法对电力电子装置建模与仿真初探[J]. 电力系统自动化, 2003, 27(9): 6-10. QI Q R, JIAO L W, CHEN S S, et al. Application of the dynamic phasors in modeling and simulation of electronic converters [J]. Automation of Electric Power Systems, 2003, 27(9): 6-10. (in Chinese)
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn