Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2023, Vol. 63 Issue (1): 24-32    DOI: 10.16511/j.cnki.qhdxxb.2022.21.037
  碳中和 本期目录 | 过刊浏览 | 高级检索 |
碘硫循环制氢中硫酸分解的全过程模拟方法
高群翔, 孙琦, 彭威, 张平, 赵钢
清华大学 核能与新能源技术研究院, 先进核能技术协同创新中心, 先进反应堆工程与安全教育部重点实验室, 北京 100084
Whole process simulation method of sulfuric acid decomposition in the iodine-sulfur cycle for hydrogen production
GAO Qunxiang, SUN Qi, PENG Wei, ZHANG Ping, ZHAO Gang
Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
全文: PDF(4786 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 碘硫循环制氢是高温气冷堆的工艺热利用的重要途径,可实现大规模、近零碳排放制氢,契合中国的双碳战略目标。碘硫循环工艺中的硫酸分解环节涉及复杂的物理化学过程,且需要在高温和腐蚀环境下进行,保障该环节的分解效率对提高工艺整体制氢效率十分关键,因此建立硫酸分解全过程的耦合计算模型对研究硫酸分解率具有重要意义。本文建立了硫酸相变与两步分解反应的耦合模型,采用数值计算的方法对碘硫循环制氢中硫酸分解的全过程进行模拟,并重点分析了刺刀管式换热器内的催化剂颗粒尺寸对分解率的影响。结果表明,刺刀管式换热器内部的催化反应区域温度满足硫酸核心反应需求,内外管的明显温差促进了热量回收。硫酸相变过程虽较为短暂,但可以强化局部换热,此外两相段长度随流量增大而增大。硫酸的第1步分解与相变几乎同步进行,反应较为彻底,转化率较高。硫酸的第2步分解贯穿催化反应区域全程,该区域前半段的转化率较高。研究结果还表明,催化剂颗粒比表面积较大时,硫酸的综合分解率明显提升,最高可达85%左右。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高群翔
孙琦
彭威
张平
赵钢
关键词 碘硫循环高温气冷堆硫酸分解多过程耦合数值模拟    
Abstract:The high-temperature gas-cooled reactor is a typical fourth-generation nuclear reactor. It has a high core outlet temperature and great potential for process heat utilization. Thermochemical iodine-sulfur cycle hydrogen production is an essential method of process heat utilization of high-temperature gas-cooled reactors that can achieve large-scale, low-carbon hydrogen production and is consistent with the two-carbon strategic goal of China. Furthermore, the development and utilization of clean energy can effectively alleviate the global energy crisis, and hydrogen energy is considered the most promising source of energy in this century and is receiving continuous attention from the industry. The iodine-sulfur cycle includes three chemical reactions: Bunsen, sulfuric acid decomposition, and hydroiodic acid decomposition. Sulfuric acid decomposition is carried out under high temperature and strong corrosive environment, and involves multiple physical and chemical processes such as flow, heat transfer, phase transition and reaction. Therefore, obtaining the thermal and reaction details of this link is critical for improving the efficiency of the iodine-sulfur cycle. Furthermore, it is crucial to study the thermal and decomposition reaction laws of the fluid in the bayonet sulfuric acid decomposition heat exchanger to improve the decomposition rate of sulfuric acid. In this study, the classical Lee model was improved by analogy to the phase transition mass transfer equation and the component transport equation using the phase transition mass transfer rate constant instead of the chemical reaction rate constant, and a coupled model of the sulfuric acid phase transition and two-step decomposition reaction was established. The whole process of sulfuric acid decomposition was simulated, and the effect of the specific surface area of catalyst particles on the decomposition was analyzed. The results show that the temperature of the catalytic reaction zone inside the bayonet heat exchanger meets the requirements of the sulfuric acid core reaction. The phase transition process is relatively brief, yet it can effectively enhance the direct heat exchange between sulfuric acid and helium. As the sulfuric acid flow increases, the length of the two-phase section also increases. The first decomposition and phase transition of sulfuric acid occur almost simultaneously. The reaction is complete, the conversion rate is high, and the molar fraction of sulfur trioxide is up to 46%. The second-step decomposition of sulfuric acid permeates the entire zone of catalytic activity. The first half zone has a high conversion rate, and the sulfur dioxide molar fraction is up to 33%. Since the gas mixture in the inner tube continuously transfers heat to the sulfuric acid in the annulus, the temperature of the gas mixture at the outlet is lowered, and a small amount of sulfuric acid is produced. The research results also show that when the specific surface area of the catalyst particles is large, the overall rate of sulfuric acid decomposition is significantly improved. The highest rate of sulfuric acid decomposition under the design conditions is about 85%.
Key wordsiodine-sulfur cycle    high-temperature gas-cooled reactor    sulfuric acid decomposition    multi-process coupling    numerical simulation
收稿日期: 2022-07-11      出版日期: 2023-01-11
基金资助:彭威,副教授,E-mail:pengwei@tsinghua.edu.cn
引用本文:   
高群翔, 孙琦, 彭威, 张平, 赵钢. 碘硫循环制氢中硫酸分解的全过程模拟方法[J]. 清华大学学报(自然科学版), 2023, 63(1): 24-32.
GAO Qunxiang, SUN Qi, PENG Wei, ZHANG Ping, ZHAO Gang. Whole process simulation method of sulfuric acid decomposition in the iodine-sulfur cycle for hydrogen production. Journal of Tsinghua University(Science and Technology), 2023, 63(1): 24-32.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2022.21.037  或          http://jst.tsinghuajournals.com/CN/Y2023/V63/I1/24
  
  
  
  
  
  
  
  
  
  
  
[1] 张作义, 吴宗鑫, 王大中, 等. 我国高温气冷堆发展战略研究[J]. 中国工程科学, 2019, 21(1): 12-19. ZHANG Z Y, WU Z X, WANG D Z, et al. Development strategy of high temperature gas cooled reactor in China [J]. Strategic Study of CAE, 2019, 21(1): 12-19. (in Chinese)
[2] ZHANG Y J, FANG X, MA T, et al. Study on on-line temperature measurement technology for core of pebble bed high temperature gas-cooled reactor [J]. Nuclear Engineering and Design, 2021, 371: 110944.
[3] WANG Q, LIU C Y, LUO R, et al. Thermo-economic analysis and optimization of the very high temperature gas-cooled reactor-based nuclear hydrogen production system using copper-chlorine cycle [J]. International Journal of Hydrogen Energy, 2021, 46(62): 31563-31585.
[4] QU X H, ZHAO G, WANG J. Thermodynamic evaluation of hydrogen and electricity cogeneration coupled with very high temperature gas-cooled reactors [J]. International Journal of Hydrogen Energy, 2021, 46(57): 29065-29075.
[5] 张平, 徐景明, 石磊, 等. 中国高温气冷堆制氢发展战略研究[J]. 中国工程科学, 2019, 21(1): 20-28. ZHANG P, XU J M, SHI L, et al. Nuclear hydrogen production based on high temperature gas cooled reactor in China [J]. Strategic Study of CAE, 2019, 21(1): 20-28. (in Chinese)
[6] GAO Q X, SUN Q, ZHANG P, et al. Sulfuric acid decomposition in the iodine-Sulfur cycle using heat from a very high temperature gas-cooled reactor [J]. International Journal of Hydrogen Energy, 2021, 46(57): 28969-28979.
[7] JUÁREZ-MARTÍNEZ L C, ESPINOSA-PAREDES G, VÁZQUEZ-RODRÍGUEZ A, et al. Energy optimization of a Sulfur-Iodine thermochemical nuclear hydrogen production cycle [J]. Nuclear Engineering and Technology, 2021, 53(6): 2066-2073.
[8] 王雅彬, 应芝, 郑晓园, 等. 热化学硫碘循环制氢系统研究进展[J]. 能源研究与信息, 2021, 37(3): 169-175. WANG Y B, YING Z, ZHENG X Y, et al. Research progress on hydrogen production by thermochemical sulfur-iodine cycle system [J]. Energy Research and Information, 2021, 37(3): 169-175. (in Chinese)
[9] NAGARAJAN V, PONYAVIN V, CHEN Y, et al. Numerical study of sulfur trioxide decomposition in bayonet type heat exchanger and chemical decomposer with porous media zone and different packed bed designs [J]. International Journal of Hydrogen Energy, 2008, 33(22): 6445-6455.
[10] NAGARAJAN V, CHEN Y, WANG Q W, et al. CFD modeling and simulation of sulfur trioxide decomposition in ceramic plate-fin high temperature heat exchanger and decomposer [J]. International Journal of Heat and Mass Transfer, 2015, 80: 329-343.
[11] CORGNALE C, MA Z W, SHIMPALEE S. Modeling of a direct solar receiver reactor for decomposition of sulfuric acid in thermochemical hydrogen production cycles [J]. International Journal of Hydrogen Energy, 2019, 44(50): 27237-27247.
[12] CHOI J S, CHOI J H. Experiment and numerical analysis for sulfuric acid decomposition reaction for applying hydrogen by nuclear [J]. International Journal of Hydrogen Energy, 2015, 40(25): 7932-7942.
[13] PATHAK S, GOSWAMI A, UPADHYAYULA S. Kinetic modeling and simulation of catalyst pellet in the high temperature sulfuric acid decomposition section of Iodine-Sulfur process [J]. International Journal of Hydrogen Energy, 2019, 44(59): 30850-30864.
[14] SHIN Y, LIM J, LEE T, et al. Designs and CFD analyses of H2SO4 and HI thermal decomposers for a semi-pilot scale SI hydrogen production test facility [J]. Applied Energy, 2017, 204: 390-402.
[15] SUN Q, GAO Q X, ZHANG P, et al. Numerical study of heat transfer and sulfuric acid decomposition in the process of hydrogen production [J]. International Journal of Energy Research, 2019, 43(11): 5969-5982.
[16] SUN Q, GAO Q X, ZHANG P, et al. Modeling sulfuric acid decomposition in a bayonet heat exchanger in the iodine-sulfur cycle for hydrogen production [J]. Applied Energy, 2020, 277: 115611.
[17] GAO Q X, ZHANG P, PENG W, et al. Structural design simulation of bayonet heat exchanger for sulfuric acid decomposition [J]. Energies, 2021, 14(2): 422.
[18] LEE W H. Pressure iteration scheme for two-phase flow modeling [M]//VERIZOGLU T N. Multiphase Transport: Fundamentals, Reactor Safety, Applications. Washington DC: Hemisphere Publishing, 1980: 407-432.
[19] CORGNALE C, SHIMPALEE S, GORENSEK M B, et al. Numerical modeling of a bayonet heat exchanger-based reactor for sulfuric acid decomposition in thermochemical hydrogen production processes [J]. International Journal of Hydrogen Energy, 2017, 42(32): 20463-20472.
[20] BATCHELOR G K. An introduction to fluid dynamics [M]. Cambridge: Cambridge University Press, 2000.
[21] NAGARAJAN V, PONYAVIN V, CHEN Y, et al. CFD modeling and experimental validation of sulfur trioxide decomposition in bayonet type heat exchanger and chemical decomposer for different packed bed designs [J]. International Journal of Hydrogen Energy, 2009, 34(6): 2543-2557.
[22] GINOSAR D M, PETKOVIC L M, Burch K C. Activity and stability of sulfuric acid decomposition catalysts for thermochemical water splitting cycles [C]//American Institute of Chemical Engineers National Meeting. Cincinnati, USA: Cincinnati Convention Center, 2005: 285d.
[1] 李玉, 王相钦, 闵敬春. 蛇形管内燃油变物性流动换热特性数值模拟[J]. 清华大学学报(自然科学版), 2024, 64(2): 337-345.
[2] 石云姣, 赵宁波, 郑洪涛. 进气畸变对重型燃气轮机燃压缸流动特性影响[J]. 清华大学学报(自然科学版), 2024, 64(1): 90-98.
[3] 苏阳, 李晓伟, 吴莘馨, 张作义. 核反应堆蒸汽发生器两相流不稳定性现象规律、研究方法及应用[J]. 清华大学学报(自然科学版), 2023, 63(8): 1184-1203.
[4] 吴浩, 牛风雷. 高温球床辐射传热中的机器学习模型[J]. 清华大学学报(自然科学版), 2023, 63(8): 1213-1218.
[5] 陈璞, 童节娟, 刘涛, 张勤昭, 王宏. 高温气冷堆主氦风机预防性维修策略研究[J]. 清华大学学报(自然科学版), 2023, 63(8): 1219-1225.
[6] 曲新鹤, 胡庆祥, 倪航, 彭威, 赵钢, 王捷. 基于高温气冷堆的制氢耦合炼钢系统初步设计和能量分析[J]. 清华大学学报(自然科学版), 2023, 63(8): 1236-1245.
[7] 曹军文, 覃祥富, 胡轶坤, 张文强, 于波, 张佑杰. 高温气冷堆耦合高温电解规模化制氢系统仿真[J]. 清华大学学报(自然科学版), 2023, 63(8): 1246-1256.
[8] 李聪健, 高航, 刘奕. 基于数值模拟和机器学习的风场快速重构方法[J]. 清华大学学报(自然科学版), 2023, 63(6): 882-887.
[9] 钟茂华, 胡鹏, 陈俊沣, 程辉航, 吴乐, 魏旋. 顶部多点竖向排烟下地铁隧道烟气控制研究[J]. 清华大学学报(自然科学版), 2023, 63(5): 754-764.
[10] 孙继昊, 罗绍文, 赵宁波, 杨慧玲, 郑洪涛. 甲烷/空气燃烧NOx排放数值模型对比[J]. 清华大学学报(自然科学版), 2023, 63(4): 623-632.
[11] 孙逸凡, 朱炜, 吴玉新, 祁海鹰. Gao-Yong湍流模型对边界层转捩的适用性研究[J]. 清华大学学报(自然科学版), 2023, 63(4): 642-648.
[12] 高畅, 李岩军, 余莉, 聂舜臣. 帆片结构张满度变化对环帆伞气动性能的影响[J]. 清华大学学报(自然科学版), 2023, 63(3): 322-329.
[13] 陈冠华, 陈雅倩, 周宁, 贾贺, 荣伟, 薛晓鹏. 具有横向运动能力的圆形伞的设计[J]. 清华大学学报(自然科学版), 2023, 63(3): 338-347.
[14] 闫慧慧, 李昊昱, 周伯豪, 张煜洲, 兰旭东. 离心压气机性能影响机理研究及优化[J]. 清华大学学报(自然科学版), 2023, 63(10): 1672-1685.
[15] 史琳, 许强辉. 稠油注空气开发技术的基础研究与应用[J]. 清华大学学报(自然科学版), 2022, 62(4): 722-734.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn