Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2023, Vol. 63 Issue (5): 730-739    DOI: 10.16511/j.cnki.qhdxxb.2022.21.039
  大数据 本期目录 | 过刊浏览 | 高级检索 |
基于无监督学习的智能数据中心电力拓扑系统
贾鹏1, 王平辉1,2, 陈品安3, 陈奕超4, 何诚5, 刘炯宙3, 管晓宏1,2,6
1. 西安交通大学 智能网络与网络安全教育部重点实验室, 西安 710049;
2. 西安交通大学 深圳研究院, 深圳 518057;
3. 阿里巴巴(中国)有限公司, 杭州 311100;
4. 上海交通大学 计算机科学与工程系, 上海 200240;
5. 上海鼎茂信息技术有限公司, 上海 200333;
6. 清华大学 自动化系, 智能与网络化系统研究中心, 北京 100084
Unsupervised learning-based intelligent data center power topology system
JIA Peng1, WANG Pinghui1,2, CHEN Pin-an3, CHEN Yichao4, HE Cheng5, LIU Jiongzhou3, GUAN Xiaohong1,2,6
1. Ministry of Education Key Laboratory for Intelligent Networks and Network Security, Xi'an Jiaotong University, Xi'an 710049, China;
2. Shenzhen Research Institute of Xi'an Jiaotong University, Shenzhen 518057, China;
3. Alibaba Group, Hangzhou 311100, China;
4. Shanghai Jiao Tong University, Shanghai 200240, China;
5. Shanghai Dingmao Information Technology Inc., Shanghai 200333, China;
6. Center for Intelligent and Networked System, Department of Automation, Tsinghua University, Beijing 100084, China
全文: PDF(2591 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 在任务关键型云计算服务中,构建准确的数据中心电力拓扑结构对于实现快速准确的故障处理,减轻故障事件对云计算服务质量的损害十分重要。但目前数据中心电力拓扑结构的生成过程具有劳动密集型的特点,其准确性难以得到有效评估和保障。该文设计了一种基于无监督学习的智能数据中心电力拓扑系统(intelligent data center power topology system,IPTS),不仅可为电力系统的运行部分自动生成实时变化的电力拓扑结构,而且可利用电力系统的监控数据对人工构建的数据中心电力拓扑结构进行验证。实验结果表明,IPTS可自动生成准确的数据中心电力拓扑结构,一致性比率(CR)可达到0.978,并可有效地定位人工构建的电力拓扑结构中的大多数错误。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
贾鹏
王平辉
陈品安
陈奕超
何诚
刘炯宙
管晓宏
关键词 数据中心电力拓扑结构自动生成与验证无监督学习    
Abstract:[Objective] In mission-critical cloud computing services, large-scale data center (DC) stability is a key metric that must be guaranteed. However, because of uncertain commercial power supplies and complex power equipment operation processes, DC failure events are inevitable and impactful, affecting related servers and network devices. To mitigate the impact, accurate DC power topology must be obtained to achieve fast and precise failure handling and root-cause localization for mitigating the damage to service quality. Nevertheless, the current process of generating DC power topology is labor intensive, and its correctness cannot be efficiently evaluated and guaranteed.[Methods]To solve these issues, instead of using the erroneous power topology provided by the operator, this paper designs an intelligent DC power topology system (IPTS). IPTS based on an unsupervised learning framework that automatically generates power topology for the working part of a power system or uses the power system monitoring data to verify manually constructed DC power topology, which may change over time. The intuition behind IPTS is that two physically connected pieces of power equipment should have not only a similar trend but also a close magnitude in specific monitoring data, e.g., current and active power, because their power loads produced by downstream servers are closed. By defining the structure abstraction of the DC power system according to the domain knowledge of DC power system architectures, the DC power system can be divided into several hierarchical functional blocks. Then, two unsupervised structure learning algorithms, namely, the one-to-one (O2O) and one-to-multiple (O2M) structure learning algorithms, are separately developed to automatically recover the O2O and O2M connection types between all pieces of power equipment in a divide-and-conquer manner. Moreover, no methods or metrics can currently be used to verify enterprise DC power topology unless manually checking with high complexity in terms of multiple data sources and numerous connections. To better indicate the consistency of connections within any two pieces of power equipment, this paper further designs an evaluation metric called the consistency ratio (CR). The CR derives from a systematic evaluation process that compares the original enterprise DC power topology information with learning-based enterprise DC power-topology information produced by IPTS automatically and iteratively.[Results] The experimental results of two large-scale DCs show that IPTS automatically generates accurate DC power topology with a 10% improvement on average over existing state-of-the-art methods and effectively reveals most errors (including errors in the local system for operations) in manually constructed DC power topology with 0.990 precision. After performing corrections according to the verification results, CR values between the learned structure and modified DC power topology can be improved to 0.978 on average, which is 18%~113% higher than that of the original topology. Additionally, for the inconsistent cases that occurred while generating and verifying power topology, this paper gives comprehensive investigations.[Conclusion] IPTS is the first system that uses data analytics for DC power topology generation and verification and has been successfully deployed for 19 enterprise DCs and applied in real large-scale industrial practice.
Key wordsdata center    power topology    automatic generation and verification    unsupervised learning
收稿日期: 2022-09-27      出版日期: 2023-04-23
基金资助:国家重点研发计划(2021YFB1715600);国家自然科学基金青年项目(61902305);国家自然科学基金委优秀青年科学基金项目(61922067);深圳市基础研究项目(JCYJ20170816100819428)
通讯作者: 王平辉,教授,E-mail:phwang@mail.xjtu.edu.cn      E-mail: phwang@mail.xjtu.edu.cn
作者简介: 贾鹏(1992—),男,博士研究生。
引用本文:   
贾鹏, 王平辉, 陈品安, 陈奕超, 何诚, 刘炯宙, 管晓宏. 基于无监督学习的智能数据中心电力拓扑系统[J]. 清华大学学报(自然科学版), 2023, 63(5): 730-739.
JIA Peng, WANG Pinghui, CHEN Pin-an, CHEN Yichao, HE Cheng, LIU Jiongzhou, GUAN Xiaohong. Unsupervised learning-based intelligent data center power topology system. Journal of Tsinghua University(Science and Technology), 2023, 63(5): 730-739.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2022.21.039  或          http://jst.tsinghuajournals.com/CN/Y2023/V63/I5/730
  
  
  
  
  
  
  
  
  
[1] PONEMON Institute. Cost of data center outages[R/OL]. (2016-01-19)[2022-11-06]. https://www.ponemon.org/research/ponemon-library/security/2016-cost-of-data-center-outages.html.
[2] CHOI D H, XIE L. Impact of power system network topology errors on real-time locational marginal price[J]. Journal of Modern Power Systems and Clean Energy, 2017, 5(5):797-809.
[3] KEZUNOVIC M. Monitoring of power system topology in real-time[C]//Proceedings of the 39th Annual Hawaii International Conference on System Sciences. Kauai, USA:IEEE, 2006:244b.
[4] LUKOMSKI R, WILKOSZ K. Power system topology verification using artificial neural networks:Maximum utilization of measurement data[C]//Proceedings of 2003 IEEE Bologna Power Tech Conference Proceedings. Bologna, Italy:IEEE, 2003:7.
[5] LUKOMSKI R, WILKOSZ K. Modeling of multi-agent system for power system topology verification with use of petri nets[C]//Proceedings of 2010 Modern Electric Power Systems. Wroclaw, Poland:IEEE, 2010:1-6.
[6] BAGOZI A, BIANCHINI D, DE ANTONELLIS V. Context-based resilience in cyber-physical production system[J]. Data Science and Engineering, 2021, 6(4):434-454.
[7] CLEMENTS K A, DAVIS P W. Detection and identification of topology errors in electric power systems[J]. IEEE Transactions on Power Systems, 1988, 3(4):1748-1753.
[8] LUKOMSKI R, WILKOSZ K. Method for power system topology verification with use of radial basis function networks[C]//Proceedings of the 9th International Work-Conference on Artificial Neural Networks Computational and Ambient Intelligence. San Sebastián, Spain:Springer, 2007:862-869.
[9] ABUR A, KIM H, CELIK M K. Identifying the unknown circuit breaker statuses in power networks[J]. IEEE Transactions on Power Systems, 1995, 10(4):2029-2037.
[10] CLEMENTS K A, COSTA A S. Topology error identification using normalized Lagrange multipliers[J]. IEEE Transactions on Power Systems, 1998, 13(2):347-353.
[11] COSTA I S, LEAO J A. Identification of topology errors in power system state estimation[J]. IEEE Transactions on Power Systems, 1993, 8(4):1531-1538.
[12] BONANOMI P, GRAMBERG G. Power system data validation and state calculation by network search techniques[J]. IEEE Transactions on Power Apparatus and Systems, 1983, PAS-102(1):238-249.
[13] DELIMAR M, PAVIC I, HEBEL Z. Artificial neural networks in power system topology recognition[C]//The IEEE Region 8 EUROCON 2003. Computer as a Tool. Ljubljana, Slovenia:IEEE, 2003:287-291.
[14] GARCIA-LAGOS F, JOYA G, MARÍN F J, et al. Modular power system topology assessment using Gaussian potential functions[J]. IEE Proceedings-Generation, Transmission and Distribution, 2003, 150(5):635-640.
[15] SINGH N, GLAVITSCH H. Detection and identification of topological errors in online power system analysis[J]. IEEE Transactions on Power Systems, 1991, 6(1):324-331.
[16] LUAN W P, PENG J, MARAS M, et al. Smart meter data analytics for distribution network connectivity verification[J]. IEEE Transactions on Smart Grid, 2015, 6(4):1964-1971.
[17] TANG Z Y, ZHOU K P, CAO K, et al. Comparison of correlation analysis and MSD used in distribution network topology verification[C]//Proceedings of 2018 China International Conference on Electricity Distribution. Tianjin, China:IEEE, 2018:1691-1694.
[18] BOLOGNANI S, BOF N, MICHELOTTI D, et al. Identification of power distribution network topology via voltage correlation analysis[C]//Proceedings of the 52nd IEEE Conference on Decision and Control. Firenze, Italy:IEEE, 2013:1659-1664.
[19] JONKER R, VOLGENANT T. Improving the Hungarian assignment algorithm[J]. Operations Research Letters, 1986, 5(4):171-175.
[20] MITCHELL M. An introduction to genetic algorithms[M]. Cambridge:MIT Press, 1998.
[21] MVHLENBEIN H, GORGES-SCHLEUTER M, KRÄMER O. Evolution algorithms in combinatorial optimization[J]. Parallel Computing, 1988, 7(1):65-85.
[22] CLERC M. Discrete particle swarm optimization, illustrated by the traveling salesman problem[M]//ONWUBOLU G C, BABU B V. New Optimization Techniques in Engineering. Berlin:Springer, 2004:219-239.
[23] KENNEDY J, EBERHART R. Particle swarm optimization[C]//Proceedings of 1995 International Conference on Neural Networks. Perth, Australia:IEEE, 1995. 1942-1948.
[24] BIANCHI L, DORIGO M, GAMBARDELLA L M, et al. A survey on metaheuristics for stochastic combinatorial optimization[J]. Natural Computing, 2009, 8(2):239-287.
[25] BLUM C, ROLI A. Metaheuristics in combinatorial optimization:Overview and conceptual comparison[J]. ACM Computing Surveys, 2003, 35(3):268-308.
[1] 刘迪, 曹军威, 刘明爽. 分布式数据中心信息能量协同优化策略[J]. 清华大学学报(自然科学版), 2022, 62(12): 1864-1874.
[2] 张彤, 任丰原, 舒然. 基于分布式优化的数据中心网络混流调度机制[J]. 清华大学学报(自然科学版), 2021, 61(6): 618-625.
[3] 杨倩文, 孙富春. 基于泛化空间正则自动编码器的遥感图像识别[J]. 清华大学学报(自然科学版), 2018, 58(2): 113-121.
[4] 王素格, 李大宇, 李旸. 基于联合模型的商品口碑数据情感挖掘[J]. 清华大学学报(自然科学版), 2017, 57(9): 926-931.
[5] 刘圣卓, 姜进磊, 杨广文. 基于副本的跨数据中心虚拟机快速迁移算法[J]. 清华大学学报(自然科学版), 2015, 55(5): 579-584.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn