Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2023, Vol. 63 Issue (5): 775-782    DOI: 10.16511/j.cnki.qhdxxb.2022.21.042
  公共安全 本期目录 | 过刊浏览 | 高级检索 |
基于定量风险评估的建筑火灾保险费率
胡俊1,2,3, 疏学明3, 解学才3, 颜峻4, 张雷3
1. 北京师范大学 国家安全与应急管理学院, 珠海 519087;
2. 北京师范大学 应急管理部-教育部减灾与应急管理研究院, 北京 100875;
3. 清华大学 工程物理系, 公共安全研究院, 北京 100084;
4. 中国劳动关系学院 安全工程学院, 北京 100048
Building fire insurance premium rate based on quantitative risk assessment
HU Jun1,2,3, SHU Xueming3, XIE Xuecai3, YAN Jun4, ZHANG Lei3
1. School of National Safety and Emergency Management, Beijing Normal University at Zhuhai, Zhuhai 519087, China;
2. Academy of Disaster Reduction and Emergency Management, Ministry of Emergency Management & Ministry of Education, Beijing Normal University, Beijing 100875, China;
3. Department of Engineering Physics, Tsinghua University, Beijing 100084, China;
4. China Institute of Industrial Relations, Institute of Safety Engineering, Beijing 100048, China
全文: PDF(1811 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 火灾保险是有效应对火灾风险的重要手段,根据建筑的火灾风险准确厘定建筑的火灾保险费率是保险行业关心的问题。当前的建筑火灾保险费率主要基于保险市场的统计数据得到火灾的发生频率和期望损失,然后再根据建筑的风险评估结果进行浮动调整。这种方法难以精确反映建筑的火灾风险,得到的保险费率也较为粗略。该文构建了建筑火灾费率的定量厘定模型,采用Bayes网络的方法计算建筑起火概率,并采用拉丁超立方采样的方法,对建筑火灾不同阶段的烧损率进行了分层采样,得到火灾损失的复合概率分布估计,从而对具体建筑的火灾风险进行定量评估,再根据风险评估的结果对保险费率进行了厘定。选取了15户家庭,根据风险评估的结果厘定了保险费率,并将结果与保险市场火灾纯保险费率进行了比较。结果表明,该模型更能反映火灾风险的差异化水平,得到的保险费率更具有公平性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡俊
疏学明
解学才
颜峻
张雷
关键词 火灾保险风险评估费率计算Bayes网络拉丁超立方采样    
Abstract:Fire is a serious threat to public life and property safety. Insurance is an effective means to deal with fire risk, and accurately determining the premium rate of buildings according to the fire risk is a concern of the insurance industry. Currently, the premium rate is mainly based on the fire frequency and loss expectation from the insurance statistics, and adjustments are based on building risk assessment results. The adjustment scheme can be divided into two types. One is the rate floating model, which gives the floating range of the premium rate based on the risk level, but the floating proportion is fairly subjective. The other is the rate calculation model, which establishes the quantitative risk assessment method to calculate the specific premium rate. However, comprehensively reflecting the hazardous in the buildings as well as the uncertainty of losses with the current risk assessment method is difficult. Thus, the premium rate is relatively rough. A quantitative model for building fire insurance premium rates is constructed in this paper. First, the Bayesian network method is used to calculate the building fire probability considering the influences of various risk sources. The specific factors affecting ignition were comprehensively analyzed from the aspects of humans, things, and environments. Therefore, 14 factors were selected to construct the Bayesian network of building ignition, based on which the probability of building fire can be calculated rather quantitatively and objectively. Second, the Latin hypercube sampling (LHS) is used to stratify the burn rate in different fire stages from ignition, growth, and development to spread with certain distributions to reflect the staging and random characteristics of fire losses. Thus, the final loss distribution, including the expected value, standard deviation, probability density function, and cumulative probability density function, can be acquired accurately. Therefore, the quantitative and dynamic risk assessment of building fire is realized, and the rate calculation model is used to compute the rate based on the result. Fifteen households were selected to calculate their premium rates based on the quantitative assessment of building fire risk, including ignition probability and loss distribution, and the premium rates are compared with the rate in the insurance market. Results show that the proposed premium rate determination model can effectively reflect the differentiated level of fire risk and ensure the fairness of insurance. The premise of the building fire insurance premium rate model in this paper is that the insurance company covers all the fire risks of the building and disregards the case of deductible due to the retainment of fire risk by the insured. In addition, the foreign statistics were adopted, and the normal loss distribution at each stage after the ignition was assumed due to the lack of domestic data. Deductibles can be considered in further research to construct premium rate models, and accurate data can be acquired to obtain results consistent with the building fire risk level in China.
Key wordsfire insurance    risk assessment    premium rate    Bayesian network    Latin hypercube sampling
收稿日期: 2022-09-07      出版日期: 2023-04-23
基金资助:国家“十三五”重点研发计划(2020YFC0833402);应急管理部消防救援局科技计划项目(2020XFZD17)
通讯作者: 疏学明,副研究员,E-mail:shuxm@tsinghua.edu.cn      E-mail: shuxm@tsinghua.edu.cn
作者简介: 胡俊(1996—),男,讲师。
引用本文:   
胡俊, 疏学明, 解学才, 颜峻, 张雷. 基于定量风险评估的建筑火灾保险费率[J]. 清华大学学报(自然科学版), 2023, 63(5): 775-782.
HU Jun, SHU Xueming, XIE Xuecai, YAN Jun, ZHANG Lei. Building fire insurance premium rate based on quantitative risk assessment. Journal of Tsinghua University(Science and Technology), 2023, 63(5): 775-782.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2022.21.042  或          http://jst.tsinghuajournals.com/CN/Y2023/V63/I5/775
  
  
  
  
  
  
  
[1] 新浪财经. NAIC公布2019美国财险TOP25, 市场集中度远低于中国("13精"数据库第63周更新公告)[EB/OL]. (2020-03-22)[2021-12-09]. https://baijiahao.baidu.com/s?id=1661838216434097147&wfr=spider&for=pc. Sina Finance. NAIC announced the 2019 TOP25 property insurance in the United States, with a much lower market concentration than China[EB/OL]. (2020-03-22)[2021-12-09]. https://baijiahao.baidu.com/s?id=1661838216434097147&wfr=spider&for=pc. (in Chinese)
[2] FONTANA M. Swiss rapid risk assessment method. Institute of Structural Engineering, SIA 81[M]. Zurich, Switzerland:ETH, 1984.
[3] DEAN A F. Analytic system for the measurement of relative fire hazard[M]. Chicago:Western Actuarial Bureau, 1902.
[4] 田玉敏. 消防经济学[M]. 北京:化学工业出版社, 2007. TIAN Y M. Economics of fire protection[M]. Beijing:Chemical Industry Press, 2007. (in Chinese)
[5] 张仁兵. 基于火灾风险评价的火灾保险模型研究[D]. 长沙:中南大学, 2011. ZHANG R B. Study on fire insurance model based on fire risk assessment[D]. Changsha:Central South University, 2011. (in Chinese)
[6] 杜红兵. 建筑火灾风险综合评价对火灾保险费率影响的研究[J]. 火灾科学, 2007, 16(4):196-200. DU H B. Synthetic evaluation of fire safety of high-rise building and its application to fluctuation of fire insurance premium rate[J]. Fire Safety Science, 2007, 16(4):196-200. (in Chinese)
[7] 马军. 基于模糊风险评价的高层建筑火灾保险模型研究[D]. 北京:北京建筑大学, 2018. MA J. Research on high-rise building fire insurance model based on fuzzy risk evaluation[D]. Beijing:Beijing University of Civil Engineering and Architecture, 2018. (in Chinese)
[8] 疏学明, 颜峻, 胡俊, 等. 基于Bayes网络的建筑火灾风险评估模型[J]. 清华大学学报(自然科学版), 2020, 60(4):321-327. SHU X M, YAN J, HU J, et al. Risk assessment model for building fires based on a Bayesian network[J]. Journal of Tsinghua University (Science and Technology), 2020, 60(4):321-327. (in Chinese)
[9] 刘平. 保险学原理与应用[M]. 2版. 北京:清华大学出版社, 2013. LIU P. Principles and applications of insurance[M]. 2nd ed. Beijing:Tsinghua University Press, 2013. (in Chinese)
[10] 王绪瑾. 保险学[M]. 5版. 北京:高等教育出版社, 2011. WANG X J. Insurance[M]. Beijing:Higher Education Press, 2011. (in Chinese)
[11] 中国保险行业协会. 中保协发布《中国保险行业协会纺织业企业财产险纯风险损失率表》[EB/OL]. (2017-12-26)[2021-08-18]. http://www.iachina.cn/art/2017/12/26/art_94_101097.html. Insurance Association of China. Pure risk loss rate schedule for textile enterprise property insurance[EB/OL]. (2017-12-26)[2021-08-18]. http://www.iachina.cn/art/2017/12/26/art_94_101097.html. (in Chinese)
[12] 袁杰, 申世飞, 疏学明. 基于事件树风险分析的火灾保险费率厘定研究[J]. 安全与环境学报, 2009, 9(4):157-160. YUAN J, SHEN S F, SHU X M. Study on the fire insurance spending rate based on the fire accident hazard tree analysis[J]. Journal of Safety and Environment, 2009, 9(4):157-160. (in Chinese)
[13] 刘小勇, 孙金华, 褚冠全. 基于火灾风险评估的企业火灾保险费率的厘定[J]. 火灾科学, 2005, 15(2):84-88. LIU X Y, SUN J H, CHU G Q. Commercial fire insurance rating based on fire risk assessment[J]. Fire Safety Science, 2005, 15(2):84-88. (in Chinese)
[14] MANES M, RUSH D. A critical evaluation of BS PD 7974-7 structural fire response data based on USA fire statistics[J]. Fire Technology, 2019, 55(4):1243-1293.
[15] TILLANDER K, KESKI-RAHKONEN O. The ignition frequency of structural fires in Finland 1996-1999[J]. Fire Safety Science, 2003, 7:1051-1062.
[16] KEN M, FUJITA T, KANEKO H, et al. A simple prediction method for room fire behavior[J]. Fire Science and Technology, 1998, 18(1):23-32.
[17] HU J, SHU X M, SHEN S F, et al. A method to improve the determination of ignition probability in buildings based on Bayesian network[J]. Fire and Materials, 2022, 46(4):666-676.
[18] RAMACHANDRAN G. The economics of fire protection[M]. London:E & FN Spon, 1998.
[19] RUTSTEIN R. Estimation of fire hazard in different occupancies[J]. Fire Surveyor, 1979, 8(2):21-25.
[20] 中华人民共和国公安部. 火灾直接财产损失统计方法:GA 185-1998[S]. 北京:中国标准出版社, 1999. Ministry of Public Security of the People's Republic of China. Statistic method for the fire direct property loss:GA 185-1998[S]. Beijing:Standards Press of China, 1999. (in Chinese)
[21] HELTON J C, DAVIS F J. Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems[J]. Reliability Engineering & System Safety, 2003, 81(1):23-69.
[22] ZHANG G W, HUANG D, ZHU G Q, et al. Probabilistic model for safe evacuation under the effect of uncertain factors in fire[J]. Safety Science, 2017, 93:222-229.
[23] 孔得朋. 火灾安全设计中参数不确定性分析及耦合风险的设计方法研究[D]. 合肥:中国科学技术大学, 2013. KONG D P. Study on parameter uncertainty analysis and risk-based design method in fire safety design[D]. Hefei:University of Science and Technology of China. (in Chinese)
[24] 马爱迪, 岳忠, 孙宝平, 等. 基于改进组合赋权法的建筑火灾保险费率研究[J]. 中国安全科学学报, 2020, 30(11):134-140. MA A D, YUE Z, SUN B P, et al. Research on building fire insurance premium rate based on improved combination weighting method[J]. China Safety Science Journal, 2020, 30(11):134-140. (in Chinese)
[1] 刘康, 刘昭伟, 陈永灿, 马芳平, 王皓冉, 黄会宝, 谢辉. 引水隧洞结构安全风险评价的动态Bayes网络模型[J]. 清华大学学报(自然科学版), 2023, 63(7): 1041-1049.
[2] 杜雨霁, 付明, 端木维可, 侯龙飞, 李静. 基于FAHP-ICV的燃气管网风险评估方法[J]. 清华大学学报(自然科学版), 2023, 63(6): 941-950.
[3] 王佳, 王维曦, 王李韬, 申世飞. 犯罪侦查决策支持模型[J]. 清华大学学报(自然科学版), 2023, 63(10): 1598-1607.
[4] 姜波, 张超, 陈涛, 袁宏永, 范维澄. 基于Bayes网络的暴雨情景构建和演化方法[J]. 清华大学学报(自然科学版), 2021, 61(6): 509-517.
[5] 疏学明, 颜峻, 胡俊, 吴津津, 邓博誉. 基于Bayes网络的建筑火灾风险评估模型[J]. 清华大学学报(自然科学版), 2020, 60(4): 321-327.
[6] 陈宇, 王娜, 王晋东. 利用三角模糊数的语言变量项集减项算法[J]. 清华大学学报(自然科学版), 2017, 57(8): 892-896.
[7] 李舟军, 吴春明, 王啸. 基于沙盒的Android应用风险行为分析与评估[J]. 清华大学学报(自然科学版), 2016, 56(5): 453-460.
[8] 马刚, 杜宇鸽, 杨熙, 张博, 史忠植. 复杂系统风险评估专家系统[J]. 清华大学学报(自然科学版), 2016, 56(1): 66-76,82.
[9] 苏伯尼, 黄弘, 张楠. 基于情景模拟的城市内涝动态风险评估方法[J]. 清华大学学报(自然科学版), 2015, 55(6): 684-690.
[10] 赵金龙, 唐卿, 黄弘, 苏伯尼, 李云涛, 付明. 基于数值模拟的大型外浮顶储罐区定量风险评估[J]. 清华大学学报(自然科学版), 2015, 55(10): 1143-1149.
[11] 马刚, 杜宇鸽, 荣江, 甘家瑞, 史忠植, 安波. 基于威胁传播的复杂信息系统安全风险评估[J]. 清华大学学报(自然科学版), 2014, 54(1): 35-43.
[12] 王得金, 江常青, 彭勇. 工业控制系统上基于安全域的攻击图生成[J]. 清华大学学报(自然科学版), 2014, 54(1): 44-52.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn