Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2023, Vol. 63 Issue (5): 840-848    DOI: 10.16511/j.cnki.qhdxxb.2022.21.043
  核能与新能源 本期目录 | 过刊浏览 | 高级检索 |
结合部耦合的能量分析方法
杨林清, 秦本科, 薄涵亮
清华大学 核能与新能源技术研究院, 先进反应堆工程与安全教育部重点实验室, 北京 100084
Energy analysis method of junction coupling
YANG Linqing, QIN Benke, BO Hanliang
Key Laboratory of Advanced Reactor Engineering and Safety of the Ministry of Education, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
全文: PDF(2913 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 输流管道系统中的水击现象会导致流体压强大幅波动,威胁管道和设备的正常工作,因此评价其瞬变流动特性具有重要的研究意义。该文基于流固耦合(FSI)水击理论,建立了能量分析方法,讨论了流体能量和管道能量的变化规律,旨在描述结合部耦合对水击过程瞬变流动特性的影响。首先采用特征线法对流固耦合4方程模型进行数值求解并验证。在此基础上对模型进行数学推导和变换,获得了管道能量和流体能量的物理表达式和控制方程。深入分析了系统中能量的传递和转换过程,进一步借助无量纲因子对结合部耦合的影响进行了定量化描述。分析结果表明:考虑结合部耦合后,管道下游约束减弱,流体能量和管道能量均有不同程度的增大,系统流固耦合的剧烈程度有所增大,管道运动的剧烈程度显著增大,流体压强脉动的剧烈程度稍有减小。研究成果有助于理解和对比流固耦合水击过程动态响应,对定量化描述其瞬变流动特性具有重要意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨林清
秦本科
薄涵亮
关键词 能量分析方法流固耦合水击结合部耦合    
Abstract:The pipeline system is widely used in various fields of industrial production. In the pipeline system, water hammer is a transient flow process triggered by flow regulation, fast closing valves, or accidents, possibly leading to large fluctuations of fluid pressure and threatening the normal operation of the pipeline and equipment. Thus, evaluating the transient flow characteristics of water hammer is necessary. Based on the fluid-structure interaction (FSI) water hammer theory, the energy analysis method was established, and the variation laws of fluid and pipeline energies were discussed to describe the influence of junction coupling on the transient flow characteristics of water hammer. First, the FSI four-equation model was solved by the method of characteristics (MOC) and verified. A variety of energy, including fluid internal energy, fluid kinetic energy, axial strain energy and axial kinetic energy of pipelines, was introduced. On this basis, the model was mathematically derived and transformed, and the physical expressions, governing equations of the pipeline and fluid energy were obtained. Combined with the initial and boundary conditions, the fluid pressure, fluid mean velocity, pipeline stress, and pipeline velocity of all nodes at different times were calculated by the FSI model. Next, according to the expressions of fluid and pipeline energy, the composite Simpson's integral method was used to integrate the physical quantities of each node numerically, and the energy of the entire pipeline at all times was obtained. The energy analysis method based on FSI water hammer theory was established, and the energy transfer and conversion process in the system were comprehensively analyzed. On this basis, the boundary conditions at the valve were changed, and the influence of the junction coupling was described quantitatively with the help of the maximum fluctuation amplitude of energy and the dimensionless factors. The following research results are presented:1) The energy analysis method explains the energy transfer and conversion in the water hammer process from the system level and provides a natural and direct perspective to understand the dynamic response process of the system, which is difficult to demonstrate in the traditional wave transmission and reflection theory. The relationship between fluid and pipeline energy is described, and the dominant energy is fluid internal and pipeline strain energy. Simultaneously, the relationship between the total fluid and pipeline energy is revealed, and their energy sources are clarified. 2) Considering the junction coupling, the energy transfer and conversion are intensified, and the fluid and pipeline energy slightly increase. Consequently, the fluid-structure coupling factor increases, the pipeline vibration factor significantly rises, and the hydraulic pulsation factor slightly decreases. Taking three energy factors as safety evaluation indexes, the protective measures of pipeline systems are proposed. 3) The energy equation is derived from the FSI water hammer model; therefore, this equation is linearly related to the FSI water hammer model. The research results provide a new method to understand and compare the dynamic response of the water hammer process of different systems and provide a direction and basis for quantifying the response characteristics of the FSI water hammer process.
Key wordsenergy analysis method    fluid-structure interaction    water hammer    junction coupling
收稿日期: 2022-07-11      出版日期: 2023-04-23
通讯作者: 薄涵亮,教授,E-mail:bohl@tsinghua.edu.cn      E-mail: bohl@tsinghua.edu.cn
作者简介: 杨林清(1997—),男,博士研究生。
引用本文:   
杨林清, 秦本科, 薄涵亮. 结合部耦合的能量分析方法[J]. 清华大学学报(自然科学版), 2023, 63(5): 840-848.
YANG Linqing, QIN Benke, BO Hanliang. Energy analysis method of junction coupling. Journal of Tsinghua University(Science and Technology), 2023, 63(5): 840-848.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2022.21.043  或          http://jst.tsinghuajournals.com/CN/Y2023/V63/I5/840
  
  
  
  
  
  
  
  
  
  
  
[1] 林毅峰. 管道结构动态特性对流体瞬变影响的研究[D]. 南京:河海大学, 2000. LIN Y F. The effect of pipe structure dynamic behaviors on fluid transient[D]. Nanjing:Hohai University, 2000. (in Chinese)
[2] TENTARELLI S C. Propagation of noise and vibration in complex hydraulic tubing systems[D]. Bethlehem:Lehigh University, 1990.
[3] ZHANG L, TIJSSELING S A, VARDY E A. FSI analysis of liquid-filled pipes[J]. Journal of Sound and Vibration, 1999, 224(1):69-99.
[4] BROWN F T. The transient response of fluid lines[J]. Journal of Basic Engineering, 1962, 84(4):547-553.
[5] BROWN F T. A quasi method of characteristics with application to fluid lines with frequency dependent wall shear and heat transfer[J]. Journal of Fluids Engineering, 1969, 91(2):217-226.
[6] D'SOUZA A F, GARG V K. Advanced dynamics:Modeling and analysis[M]. New Jersey:Prentice Hall, 1984.
[7] HOLMBOE E L, ROULEAU W T. The effect of viscous shear on transients in liquid lines[J]. Journal of Fluids Engineering, 1967, 89(1):174-180.
[8] 张挺, 谭志新, 张恒, 等. 基于分离系数矩阵差分法的输流管道轴向耦合响应特性研究[J].振动与冲击, 2018, 37(5):148-154. ZHANG T, TAN Z X, ZHANG H, et al. Axial coupled response characteristics of a fluid-conveying pipeline based on split-coefficient matrix finite difference method[J]. Journal of Vibration and Shock, 2018, 37(5):148-154. (in Chinese)
[9] RIEDELMEIER S, BECKER S, SCHLVCKER E. Measurements of junction coupling during water hammer in piping systems[J]. Journal of Fluids and Structures, 2014, 48:156-168.
[10] RIEDELMEIER S, BECKER S, SCHLVCKER E. Identification of the strength of junction coupling effects in water hammer[J]. Journal of Fluids and Structures, 2017, 68:224-244.
[11] AHMADI A, KERAMAT A. Investigation of fluid-structure interaction with various types of junction coupling[J]. Journal of Fluids and Structures, 2010, 26(7-8):1123-1141.
[12] FERRAS D, MANSO P A, SCHLEISS A J, et al. Fluid-structure interaction in straight pipelines with different anchoring conditions[J]. Journal of Sound and Vibration, 2017, 394:348-365.
[13] KERAMAT A, FATHI-MOGHADAM M, ZANGANEH R, et al. Experimental investigation of transients-induced fluid-structure interaction in a pipeline with multiple-axial supports[J]. Journal of Fluids and Structures, 2020, 93:102848.
[14] HOSSEINI R S, AHMADI A, ZANGANEH R. Fluid-structure interaction during water hammer in a pipeline[JP+7]with different performance mechanisms of viscoelastic supports[J]. Journal of Sound and Vibration, 2020, 487:115527.
[15] KARNEY B W. Energy relations in transient closed-conduit flow[J]. Journal of Hydraulic Engineering, 1990, 116(10):1180-1196.
[16] KUNG C S, YANG X L. Energy interpretation of hydraulic transients in power plant with surge tank[J]. Journal of Hydraulic Research, 1993, 31(6):825-840.
[17] GHIDAOUI M S, KARNEY B W, MCINNIS D A. Energy estimates for discretization errors in water hammer problems[J]. Journal of Hydraulic Engineering, 1998, 124(4):384-393.
[18] MENICONI S, BRUNONE B, FERRANTE M, et al. Energy dissipation and pressure decay during transients in viscoelastic pipes with an in-line valve[J]. Journal of Fluids and Structures, 2014, 45:235-249.
[19] 朱炎, 吴晨光, 袁一星, 等. 黏弹性输水管道中含气瞬变流压力衰减分析[J].水利学报, 2018, 49(3):303-312. ZHU Y, WU C G, YUAN Y X, et al. Analysis of pressure damping in air-water transient flow in viscoelastic pipes[J]. Journal of Hydraulic Engineering, 2018, 49(3):303-312. (in Chinese)
[20] 朱炎. 基于气液两相流的输水管道稳态振动及瞬变过程研究[D]. 哈尔滨:哈尔滨工业大学, 2018. ZHU Y. Study on steady-state vibration and transient process in water conveyance pipeline based on gas-liquid two-phase flow[D]. Harbin:Harbin Institute of Technology, 2018. (in Chinese)
[21] PAN B, KERAMAT A, CAPPONI C, et al. Transient energy analysis in water-filled viscoelastic pipelines[J]. Journal of Hydraulic Engineering, 2022, 148(1):04021051.
[22] TIJSSELING A S. Fluid-structure interaction in liquid-filled pipe systems:A review[J]. Journal of Fluids and Structures, 1996, 10(2):109-146.
[23] LAVOOIJ C S W, TIJSSELING A S. Fluid-structure interaction in liquid-filled piping systems[J]. Journal of Fluids and Structures, 1991, 5(5):573-595.
[1] 王奇, 蒋伟, 王文强, 雷江利, 张章, 赵淼. 材料弹性对降落伞充气展开力学性能影响[J]. 清华大学学报(自然科学版), 2023, 63(3): 356-366.
[2] 张章, 吴杰, 赵淼, 王奇, 刘宇. 空间充气式返回器气动弹性动力响应特征[J]. 清华大学学报(自然科学版), 2023, 63(3): 394-405.
[3] 项冲, 龙伟漾, 郭飞, 张新异, 蒋杰. 盾构主驱动密封性能流固耦合仿真[J]. 清华大学学报(自然科学版), 2023, 63(1): 71-77.
[4] 黄伟峰, 潘晓波, 王子羲, 郭飞, 刘莹, 李永健, 刘向锋. 上游泵送机械密封热流固耦合建模与性能分析[J]. 清华大学学报(自然科学版), 2020, 60(7): 603-610.
[5] 张明, 郑双凌, 马吉明, 齐文彪. 简单管路中水击的类型偏误分析及解析计算[J]. 清华大学学报(自然科学版), 2017, 57(9): 986-992.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn