Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (2): 215-220    DOI: 10.16511/j.cnki.qhdxxb.2022.22.004
  专题:建设管理 本期目录 | 过刊浏览 | 高级检索 |
智能施工平台关键作业场景、要素及发展路径
张昊1, 马羚1, 田士川2, 郭红领1
1. 清华大学 建设管理系, 北京 100084;
2. 广东博鼎建筑科技有限公司, 佛山 528300
Critical construction scenarios, elements and development paths for intelligent construction platforms
ZHANG Hao1, MA Ling1, TIAN Shichuan2, GUO Hongling1
1. Department of Construction Management, Tsinghua University, Beijing 100084, China;
2. Guangdong Boding Construction Technology Co., Ltd., Foshan 528300, China
全文: PDF(3604 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 智能建造技术正在快速发展中,越来越多的智能建造产品相继出现,智能施工平台就是其中一种典型产品,但尚处于初期发展阶段。目前在智能施工平台研发过程中,尚缺乏对其关键作业场景、要素及未来发展路径进行系统研究。该文通过文献综述和专家访谈分析了国内外典型的施工平台案例,依托建筑工程施工梳理智能建造下施工平台的关键作业场景和要素。从关键作业场景、自动化程度、安全监管和系统效益4个维度出发,提出智能施工平台未来发展的机械化、单项工序半自动化、多项工序半自动化、多项工序全自动化、全自动化5个阶段,为智能施工平台的健康发展提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张昊
马羚
田士川
郭红领
关键词 智能建造施工平台关键作业场景发展阶段    
Abstract:Intelligent construction methods are being rapidly developed with various intelligent construction products being developed, such as intelligent construction platforms. However, these intelligent construction methods are still in their early development stage. Few previous studies have considered critical construction scenarios, elements and future development paths of intelligent construction platforms. This study analyzes typical foreign and domestic construction platform cases to identify the critical construction scenarios and elements of effective construction platforms through a literature review and expert interviews. Future developments in the fields of intelligent construction platforms will go through 5 stages (mechanisation, semi-automation of a certain process, semi-automation of multiple processes, full automation of multiple processes, and full automation) with different critical construction scenarios, degrees of automation, safety supervision and platform system benefits. This study will provide references for rapid development of intelligent construction platforms.
Key wordsintelligent construction    construction platforms    critical construction scenarios    development stages
收稿日期: 2021-08-14      出版日期: 2022-01-22
基金资助:清华大学国强研究院项目(2019GQI0003)
通讯作者: 郭红领,副教授,E-mail:hlguo@tsinghua.edu.cn      E-mail: hlguo@tsinghua.edu.cn
作者简介: 张昊(1998-),男,硕士研究生
引用本文:   
张昊, 马羚, 田士川, 郭红领. 智能施工平台关键作业场景、要素及发展路径[J]. 清华大学学报(自然科学版), 2022, 62(2): 215-220.
ZHANG Hao, MA Ling, TIAN Shichuan, GUO Hongling. Critical construction scenarios, elements and development paths for intelligent construction platforms. Journal of Tsinghua University(Science and Technology), 2022, 62(2): 215-220.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2022.22.004  或          http://jst.tsinghuajournals.com/CN/Y2022/V62/I2/215
  
  
  
  
  
  
[1] International Labour Office (ILO). A global alliance against forced labour[EB/OL]. (2020-11-09)[2021-07-08]. https://www.ilo.org/wcmsp5/groups/public/@ed_norm/@declaration/documents/publication/wcms_081882.pdf.
[2] BRADLEY D A, SEWARD D W. Robots and automated systems for the civil and construction industries[J]. Civil Engineering Systems, 1990, 7(3):135-139.
[3] YAMAZAKI Y, MAEDA J. The SMART system:An integrated application of automation and information technology in production process[J]. Computers in Industry, 1998, 35(1):87-99.
[4] IKEDA Y, HARADA T. The automated building construction system for high-rise steel structure building[C]//Proceedings of the CTBUH 2004 Seoul Conference. Seoul, Korea:Council on Tall Buildings and Urban Habitat, 2004, 2:707-713.
[5] WAKISAKA T, FURUYA N, INOUE Y, et al. Automated construction system for high-rise reinforced concrete buildings[J]. Automation in Construction, 2000, 9(3):229-250.
[6] KIM D W, AN S H, CHO H, et al. Development of conceptual model of construction factory for automated construction[J]. Building and Environment, 2009, 44(8):1634-1642.
[7] KANGARI R, YOSHIDA T. Prototype robotics in construction industry[J]. Journal of Construction Engineering and Management, 1989, 115(2):284-301.
[8] ZHONG C H, FU J C, WANG Y S, et al. Development and application of self-climbing operation platform for super high-rise steel structure[C]//Steel Structure and Metal Roofing New Technology Application. Beijing:China Architecture & Building Press, 2015:491-497. (in Chinese)钟红春, 傅觉聪, 汪永胜, 等. 超高层钢结构自爬升操作平台的研发及应用[C]//钢结构与金属屋面新技术应用. 北京:中国建筑工业出版社, 2015:491-497.
[9] CHENG Z J, ZHU Z S, HE J H, et al. Design and construction of climbing operation frame in elevator shaft of super tall building[J]. Building Construction, 2017, 39(11):1648-1651. (in Chinese)程志军, 朱早孙, 何浚鸿, 等. 超高层建筑电梯井筒内爬升操作架的设计与施工[J]. 建筑施工, 2017, 39(11):1648-1651.
[10] YANG H, ZHENG Z H, LI C S, et al. Combination of hydraulic climbing mould and concrete placing-boom construction technique[J]. Architecture Technology, 2018, 49(10):1093-1096. (in Chinese)杨宏, 郑志辉, 李臣森, 等. 液压爬模-布料机一体化施工技术[J]. 建筑技术, 2018, 49(10):1093-1096.
[11] LIANG X X, LIN S C, CHENG H B. Self-climbing unloading platform construction technology[J]. City & House, 2017, 24(1):113-115. (in Chinese)梁新星, 林仕超, 程和波. 自爬升式卸料平台施工技术[J]. 城市住宅, 2017, 24(1):113-115.
[12] LIU F, LIAO F, LIU H, et al. Research and application of intelligent hydraulic stepping self-climbing transfer platform[J]. Guangdong Architecture Civil Engineering, 2017, 24(5):53-56. (in Chinese)刘飞, 廖峰, 刘辉, 等. 智能化液压步进式自爬升转料平台研究与应用[J]. 广东土木与建筑, 2017, 24(5):53-56.
[13] GUO H, LU C H, LI C, et al. Research and application of self-climbing type horizontal tough protection platform in core tube of super tall building[J]. Building Construction, 2016, 38(1):53-55. (in Chinese)郭海, 路朝辉, 李成, 等. 超高层核心筒内自爬升式水平硬防护平台的研究与应用[J]. 建筑施工, 2016, 38(1):53-55.
[14] PAN X. Cooperative construction of integrated protection and operation lifting platform and construction equipment attached to structure[J]. Building Construction, 2020, 42(12):2303-2306. (in Chinese)潘曦. 防护与作业一体化升降平台与结构外附施工设备的协同建造[J]. 建筑施工, 2020, 42(12):2303-2306.
[15] Boding Construction Technology. The first complete jacking of the self-lifting building platform on September 26 was a complete success[EB/OL]. (2020-09-28)[2021-07-08]. https://mp.weixin.qq.com/s/h0LcnjM_7r5zkosFgF1e6g. (in Chinese)博鼎建筑科技. 9月26日自升造楼平台首次整机顶升圆满成功[EB/OL]. (2020-09-28)[2021-07-08]. https://mp.weixin.qq.com/s/h0LcnjM_7r5zkosFgF1e6g.
[16] Ministry of Housing and Urban-Rural Development of the People's Republic of China. Unified standards for constructional quality of acceptance of building engineering:GB 50300-2013[S]. Beijing:China Architecture & Building Press, 2014. (in Chinese)住房和城乡建设部. 建筑工程施工质量验收统一标准:GB 50300-2013[S]. 北京:中国建筑工业出版社, 2014.
[17] SOBOTKA A, PACEWICZ K. Mechanisation and automation technologies development in work at construction sites[J]. IOP Conference Series:Materials Science and Engineering, 2017, 251(1):012046.
[18] SHERIDAN T B, VERPLANK W L. Human and computer control of undersea teleoperators[R]. Cambridge, USA:Man-Machine Systems Laboratory, 1978.
[1] 李庆斌, 马睿, 胡昱, 皇甫泽华, 沈益源, 周绍武, 马金刚, 安再展, 郭光文. 大坝智能建造研究进展与发展趋势[J]. 清华大学学报(自然科学版), 2022, 62(8): 1252-1269.
[2] 樊启祥, 林鹏, 魏鹏程, 宁泽宇, 李果. 智能建造闭环控制理论[J]. 清华大学学报(自然科学版), 2021, 61(7): 660-670.
[3] 谭尧升, 樊启祥, 汪志林, 陈文夫, 郭增光, 林恩德, 林鹏, 周天刚, 周孟夏, 刘春风, 龚攀, 裴磊. 白鹤滩特高拱坝智能建造技术与应用实践[J]. 清华大学学报(自然科学版), 2021, 61(7): 694-704.
[4] 刘有志, 张国新, 谭尧升, 刘春风, 龚攀, 裴磊. 仿真大坝建设关键技术与实践应用[J]. 清华大学学报(自然科学版), 2021, 61(7): 714-723.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn