Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (10): 1697-1705    DOI: 10.16511/j.cnki.qhdxxb.2022.22.009
  核能与新能源技术 本期目录 | 过刊浏览 | 高级检索 |
基于仿生结构流场的质子交换膜燃料电池的性能
王泽英, 陈涛, 张继伟, 陈金奇, 冯政恒
武汉理工大学 机电工程学院, 武汉 430070
Performance of proton exchange membrane fuel cells with bionics flow field structures
WANG Zeying, CHEN Tao, ZHANG Jiwei, CHEN Jinqi, FENG Zhengheng
School of Mechanical and Electrical Engineering, Wuhan University of Technology, Wuhan 430070, China
全文: PDF(8966 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 流场对于质子交换膜燃料电池(PEMFC)的燃料分布及水管理具有重要影响。该文根据银杏叶叶脉结构在双极板上设计了一种仿生结构流场。采用计算流体动力学商业软件Fluent对其峰值功率密度及内部情况进行了模拟分析。比较了分别采用该仿生流场、平行流场及五蛇流场的PEMFC在峰值功率密度、内部质量传输及电流密度分布等方面的差异,结果表明:采用仿生流场的电池峰值功率密度比平行流场高28.85%,但比五蛇流场低4.36%。由于仿生流场具有更高的气体压力,其内部反应物分布及电流密度分布比平行流场更均匀。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王泽英
陈涛
张继伟
陈金奇
冯政恒
关键词 质子交换膜燃料电池(PEMFC)仿生流场极化曲线质量传输水管理    
Abstract:The flow field has a very important effect on the proton exchange membrane fuel cell (PEMFC) fuel distribution and water management.This study used the structure of ginkgo veins to design a bionic flow field on a bipolar plate.The peak power densities and internal conditions were analyzed using the commercial computional fluid dynamics (CFD) software Fluent.The peak power density,internal mass transfer characteristics and current density distributions of PEMFCs with this bionic flow field,a paralled flow field and a five-snake flow field were compared to show that the bionic flow field increased the peak power density by 28.85% over that of the parallel flow field,which was,however,still 4.36% lower than that of the five-snake flow field.The reactant distribution and the current density in the bionic flow field are better than in the parallel flow field because of the larger pressure.
Key wordsproton exchange membrane fuel cell (PEMFC)    bionic flow field    polarization curve    mass transfer    water management
收稿日期: 2021-07-22      出版日期: 2022-09-03
基金资助:陈涛,教授,E-mail:chent29@whut.edu.cn
引用本文:   
王泽英, 陈涛, 张继伟, 陈金奇, 冯政恒. 基于仿生结构流场的质子交换膜燃料电池的性能[J]. 清华大学学报(自然科学版), 2022, 62(10): 1697-1705.
WANG Zeying, CHEN Tao, ZHANG Jiwei, CHEN Jinqi, FENG Zhengheng. Performance of proton exchange membrane fuel cells with bionics flow field structures. Journal of Tsinghua University(Science and Technology), 2022, 62(10): 1697-1705.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2022.22.009  或          http://jst.tsinghuajournals.com/CN/Y2022/V62/I10/1697
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] 焦魁,王博文,杜青,等.质子交换膜燃料电池水热管理[M].北京:科学出版社, 2020. JIAO K, WANG B W, DU Q, et al. Hydrothermal management of proton exchange membrane fuel cell[M]. Beijing:Science Press, 2020.(in Chinese)
[2] WANG X F, QIN Y Z, WU S Y, et al. Numerical and experimental investigation of baffle plate arrangement on proton exchange membrane fuel cell performance[J]. Journal of Power Sources, 2020, 457:228034.
[3] 吴明格.燃料电池双极板仿生流场主动排水机理与表面改性研究[D].杭州:浙江工业大学, 2016. WU M G. Study on bionic flow field active drainage mechanism and surface modification of proton exchange membrane fuel cell bipolar plate[D]. Hangzhou:Zhejiang University of Technology, 2016.(in Chinese)
[4] WANG C T, HU Y C, ZHENG P L. Novel biometric flow slab design for improvement of PEMFC performance[J]. Applied Energy, 2010, 87(4):1366-1375.
[5] CHEN T, XIAO Y, CHEN T Z. The impact on PEMFC of bionic flow field with a different branch[J]. Energy Procedia, 2012, 28:134-139.
[6] 李子君,王树博,李微微,等.波形流道增强质子交换膜燃料电池性能[J].清华大学学报(自然科学版), 2021, 61(10):1046-1054. LI Z J, WANG S B, LI W W, et al. Wavy channels to enhance the performance of proton exchange membrane fuel cells[J]. Journal of Tsinghua University (Science and Technology), 2021, 61(10):1046-1054.(in Chinese)
[7] NAJMI A U H.质子交换膜燃料电池不同流场的实验研究与优化[D].天津:天津大学, 2018. NAJMI A U H. Experimental investigation and optimization of proton exchange membrane fuel cell using different flow fields[D]. Tianjin:Tianjin University, 2018.(in Chinese)
[8] 高攀. PEMFC双极板仿生流场结构水管理的研究[D].武汉:武汉理工大学, 2014. GAO P. The study of water management in bionic flow field structure for PEMFC[D]. Wuhan:Wuhan University of Technology, 2014.(in Chinese)
[9] 肖勇.基于仿生学与TRIZ理论的PEMFC双极板流场结构设计[D].武汉:武汉理工大学, 2012. XIAO Y. Flow field structure design based on bionics and TRIZ for PEMFC bipolar plate[D]. Wuhan:Wuhan University of Technology, 2012.(in Chinese)
[10] JANG J Y, CHENG C H, LIAO W T, et al. Experimental and numerical study of proton exchange membrane fuel cell with spiral flow channels[J]. Applied Energy, 2012, 99:67-79.
[11] LIAN Y T, XIE Q Z, ZHENG M G. Investigation on the optimal angle of a flow-field design based on the leaf-vein structure for PEMFC[J]. Journal of New Materials for Electrochemical Systems, 2020, 23(4):262-268.
[12] IRANZO A, ARREDONDO C H, KANNAN A M, et al. Biomimetic flow fields for proton exchange membrane fuel cells:A review of design trends[J]. Energy, 2020, 190:116435.
[1] 程新月, 王昊, 李智, 周晋军. 基于OPUT的城市LID设施防涝布设方法[J]. 清华大学学报(自然科学版), 2024, 64(4): 638-648.
[2] 李雪, 张虹, 林程, 王树博, 谢晓峰. 直接膜沉积制备高性能增强型质子交换膜燃料电池膜电极[J]. 清华大学学报(自然科学版), 2021, 61(10): 1039-1045.
[3] 李子君, 王树博, 李微微, 朱彤, 谢晓峰. 波形流道增强质子交换膜燃料电池性能[J]. 清华大学学报(自然科学版), 2021, 61(10): 1046-1054.
[4] 印定坤,陈正侠,李骐安,贾海峰,刘正权,沈雷. 降雨特征对多雨城市海绵改造小区径流控制效果的影响[J]. 清华大学学报(自然科学版), 2021, 61(1): 50-56.
[5] 吕恒, 倪广恒, 曹雪健, 田富强. 道路在城市排涝中的作用及影响因素定量评价[J]. 清华大学学报(自然科学版), 2018, 58(10): 906-913.
[6] 李跃华, 裴普成, 吴子尧, 贾肖宁. 质子交换膜燃料电池阴极单相流压降模型及验证[J]. 清华大学学报(自然科学版), 2018, 58(1): 43-49.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn