Abstract:New energy vehicles are mainly powered by high energy density batteries that can experience thermal safety issues that have received extensive attention from researchers. The battery thermal management system is designed to prevent thermal runaway in the batteries. This paper presents a coupled heat transfer and battery heat generation study using porous medium composite phase change materials (CPCM) for battery thermal management. The study uses numerical models and experiments with particle image velocimetry (PIV) to research the heat generation in lithium-ion batteries in the porous composite phase change unit and the heat transfer in the composite phase change materials. The results show that the porous media accelerate melting of the phase change materials (PCM), composite phase change materials can slow the battery temperature increase and the current intensity can significantly impact the melting process, energy storage and energy storage efficiency of the thermal management system. Thus, the composite phase change material improves the heat dissipation in the battery which slows the temperature increase. Dual-battery models should have a space between the batteries to improve the heat dissipation for the thermal management system.
刘梓标, 林俊江, 李和鑫, 黄天娇, 徐文彬, 庄依杰. 考虑电池产热的多孔介质复合相变材料的传热性能[J]. 清华大学学报(自然科学版), 2022, 62(6): 1037-1043.
LIU Zibiao, LIN Junjiang, LI Hexin, HUANG Tianjiao, XU Wenbin, ZHUANG Yijie. Heat transfer in porous medium composite phase change materials with battery heat generation. Journal of Tsinghua University(Science and Technology), 2022, 62(6): 1037-1043.
[1] FENG X N, LU L G, OUYANG M G, et al. A 3D thermal runaway propagation model for a large format lithium ion battery module[J]. Energy, 2016, 115:194-208. [2] WEN J P, ZHAO D, ZHANG C W. An overview of electricity powered vehicles:Lithium-ion battery energy storage density and energy conversion efficiency[J]. Renewable Energy, 2020, 162:1629-1648. [3] 张国庆, 饶中浩, 吴忠杰, 等. 采用相变材料冷却的动力电池组的散热性能[J]. 化工进展, 2009, 28(1):23-26, 40. ZHANG G Q, RAO Z H, WU Z J, et al. Experimental investigation on the heat dissipation effect of power battery pack cooled with phase change materials[J]. Chemical Industry and Engineering, 2009, 28(1):23-26, 40. (in Chinese) [4] 饶中浩, 汪双凤, 洪思慧, 等. 电动汽车动力电池热管理实验与数值分析[J]. 工程热物理学报, 2013, 34(6):1157-1160. RAO Z H, WANG S F, HONG S H, et al. Experimental and numerical study on the power battery thermal management of electric vehicle[J]. Journal of Engineering Thermophysics, 2013, 34(6):1157-1160. (in Chinese) [5] 凌子夜, 方晓明, 汪双凤, 等. 相变材料用于锂离子电池热管理系统的研究进展[J]. 储能科学与技术, 2013, 2(5):451-459. LING Z Y, FANG X M, WANG S F, et al. Thermal management of lithium-ion batteries using phase change materials[J]. Energy Storage Science and Technology, 2013, 2(5):451-459. (in Chinese) [6] 张国庆, 张海燕. 相变储能材料在电池热管理系统中的应用研究进展[J]. 材料导报, 2006, 20(8):9-12. ZHANG G Q, ZHANG H Y. Progress in application of phase change materials in battery module thermal management system[J]. Materials Review, 2006, 20(8):9-12. (in Chinese) [7] MAT S, AL-ABIDI A A, SOPIAN K, et al. Enhance heat transfer for PCM melting in triplex tube with internal-external fins[J]. Energy Conversion and Management, 2013, 74:223-236. [8] PRASANTH N, SHARMA M, YADAV R N, et al. Designing of latent heat thermal energy storage systems using metal porous structures for storing solar energy[J]. Journal of Energy Storage, 2020, 32:101990. [9] ZHUANG Y J, LIU Z B, XU W B. Experimental investigation on the non-Newtonian to Newtonian rheology transition of nanoparticles enhanced phase change material during melting[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2021, 629:127432. [10] FADEN M, LINHARDT C, HOHLEIN S, et al. Velocity field and phase boundary measurements during melting of n-octadecane in a cubical test cell[J]. International Journal of Heat and Mass Transfer, 2019, 135:104-114. [11] ZHENG H P, WANG C H, LIU Q M, et al. Thermal performance of copper foam/paraffin composite phase change material[J]. Energy Conversion and Management, 2018, 157:372-381. [12] YANG X H, BAI Q S, GUO Z X, et al. Comparison of direct numerical simulation with volume-averaged method on composite phase change materials for thermal energy storage[J]. Applied Energy, 2018, 229:700-714. [13] CALMIDI V V. Transport phenomena in high porosity fibrous metal foams[D]. Boulder, USA:University of Colorado, 1998. [14] CALMIDI V V, MAHAJAN R L. Forced convection in high porosity metal foams[J]. Journal of Heat Transfer, 2000, 122(3):557-565. [15] FOURIE J G, DU PLESSIS J P. Pressure drop modelling in cellular metallic foams[J]. Chemical Engineering Science, 2002, 57(14):2781-2789. [16] NIELD D A, BEJAN A. Convection in porous media[M]. 3rd ed. New York, USA:Springer, 2006. [17] ZHANG P, MENG Z N, ZHU H, et al. Melting heat transfer characteristics of a composite phase change material fabricated by paraffin and metal foam[J]. Applied Energy, 2017, 185:1971-1983. [18] BERNARDI D, PAWLIKOWSKI E, NEWMAN J. A general energy balance for battery systems[J]. Journal of the Electrochemical Society, 1985, 132(1):5-12. [19] CHEN F F, HUANG R, WANG C M, et al. Air and PCM cooling for battery thermal management considering battery cycle life[J]. Applied Thermal Engineering, 2020, 173:115154. [20] 洪文华. 相变材料在锂离子动力电池热管理中的应用研究[D]. 杭州:浙江大学, 2019. HONG W H. Application of phase change material in thermal management of lithium ion power battery[D]. Hangzhou:Zhejiang University, 2019. (in Chinese) [21] VENKATA B, DINESH S, BHATTACHARYA A. Effect of foam geometry on heat absorption characteristics of PCM-metal foam composite thermal energy storage systems[J]. International Journal of Heat and Mass Transfer, 2019, 134:866-883. [22] ZHU F, ZHANG C, GONG X L. Numerical analysis on the energy storage efficiency of phase change material embedded in finned metal foam with graded porosity[J]. Applied Thermal Engineering, 2017, 123:256-265. [23] PU L, ZHANG S Q, XU L L, et al. Numerical study on the performance of shell-and-tube thermal energy storage using multiple PCMs and gradient copper foam[J]. Renewable Energy, 2021, 174:573-589. [24] PATANKAR S V, SPALDING D B. A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows[J]. International Journal of Heat and Mass Transfer, 1972, 15(10):1787-1806. [25] ZHANG X C, SU G K, LIN J J, et al. Three-dimensional numerical investigation on melting performance of phase change material composited with copper foam in local thermal non-equilibrium containing an internal heater[J]. International Journal of Heat and Mass Transfer, 2021, 170:121021.