Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (6): 1044-1051    DOI: 10.16511/j.cnki.qhdxxb.2022.22.031
  专刊:公共安全 本期目录 | 过刊浏览 | 高级检索 |
人员移动对患者呼出病毒颗粒传播影响的数值研究
吴家麟1,2, 翁文国1,2, 付明3,4
1. 清华大学 工程物理系, 公共安全研究院, 北京 100084;
2. 城市综合应急科学北京市重点实验室, 北京 100084;
3. 清华大学 合肥公共安全研究院, 合肥 230601;
4. 安徽省人员安全重点实验室, 合肥 230601
Effect of human movement on a patient's exhaled viral particle transmission: A numerical study
WU Jialin1,2, WENG Wenguo1,2, FU Ming3,4
1. Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University, Beijing 100084, China;
2. Beijing Key Laboratory of City Integrated Emergency Response Science, Beijing 100084, China;
3. Hefei Institute for Public Safety Research, Tsinghua University, Hefei 230601, China;
4. Anhui Province Key Laboratory of Human Safety, Hefei 230601, China
全文: PDF(18333 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 许多呼吸道传染病(如新型冠状病毒肺炎)同时具有飞沫传播和气溶胶传播的特点,人员移动会影响病毒颗粒的传播路径。该文使用具有真实人体形状的三维数值模型,采用计算流体动力学(CFD)方法研究了人员移动对患者呼出病毒颗粒传播的影响,分析了气流、气压和颗粒扩散的瞬态变化特性,并通过实验数据进行了对比验证。结果表明:在通风不良的室内,移动者以1 m/s从坐姿患者身旁经过时,尾流速度峰值可达1.6~2.0 m/s,横向距离0.10、0.25、0.55 m外的气流速度峰值分别达到0.53、0.22、0.13 m/s,室内气流波动持续时间可能超过10 s;附近区域气流速度呈现双峰特点;移动导致的局部气压差(0.49 Pa)引起卷吸气流,促使病毒颗粒被带入移动者尾流,并减缓了重力主导的近距离沉降,导致超过50%的病毒颗粒沉积在移动者表面或扩散到远处。据此建议在疫情流行地区采取减少跨区域走动、佩戴口罩、个性化通风等措施。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴家麟
翁文国
付明
关键词 人员移动呼吸道传染病气溶胶传播室内气流    
Abstract:Droplet transmission and aerosol transmission are both possible transmission pathways for many respiratory infections (e.g., COVID-19) and human movements may affect these viral particle transmission pathways. Realistic 3-D human models were used here in a computational fluid dynamics (CFD) study to analyze the effect of human movements on the transmission of virus particles exhaled by a patient. The changes in the airflow, pressure and particle diffusion were compared with experimental data to verify the accuracy of the computations. The results show that when a person passes by a sitting patient in a poorly ventilated room, the wake velocities can reach 1.6~2.0 m/s. The airflow velocity can reach 0.53 m/s at 0.10 m from the moving person, 0.22 m/s at 0.25 m away, and 0.13 m/s at 0.55 m away. The airflow fluctuations can last more than 10 s. Double peak airflow velocities are found near the moving person. The pressure difference of 0.49 Pa caused by the moving person moves the air and the viral particles into the wake of the moving person and slows the nearby droplet deposition. More than 50% of the viral particles are deposited on the moving person's body or spread further. Thus, this study recommends less cross-area movement in epidemic areas and that all people should wear masks and use personalized ventilation equipment.
Key wordshuman movement    respiratory infection    aerosol transmission    indoor airflow
收稿日期: 2022-02-09      出版日期: 2022-05-06
基金资助:国家杰出青年科学基金项目(71725006);国家自然科学基金项目(72034004,52074163)
通讯作者: 翁文国,教授,E-mail:wgweng@tsinghua.edu.cn      E-mail: wgweng@tsinghua.edu.cn
作者简介: 吴家麟(1997-),男,博士研究生。
引用本文:   
吴家麟, 翁文国, 付明. 人员移动对患者呼出病毒颗粒传播影响的数值研究[J]. 清华大学学报(自然科学版), 2022, 62(6): 1044-1051.
WU Jialin, WENG Wenguo, FU Ming. Effect of human movement on a patient's exhaled viral particle transmission: A numerical study. Journal of Tsinghua University(Science and Technology), 2022, 62(6): 1044-1051.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2022.22.031  或          http://jst.tsinghuajournals.com/CN/Y2022/V62/I6/1044
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] JAYAWEERA M, PERERA H, GUNAWARDANA B, et al. Transmission of COVID-19 virus by droplets and aerosols:A critical review on the unresolved dichotomy[J]. Environmental Research, 2020, 188:109819.
[2] NAZAROFF W W. Indoor aerosol science aspects of SARS-CoV-2 transmission[J]. Indoor Air, 2022, 32(1):e12970.
[3] WANG C C, PRATHER K A, SZNITMAN J, et al. Airborne transmission of respiratory viruses[J]. Science, 2021, 373(6558):eabd9149.
[4] MIRIKAR D, PALANIVEL S, ARUMURU V. Droplet fate, efficacy of face mask, and transmission of virus-laden droplets inside a conference room[J]. Physics of Fluids, 2021, 33(6):065108.
[5] LIU F, LUO Z W, LI Y G, et al. Revisiting physical distancing threshold in indoor environment using infection-risk-based modeling[J]. Environment International, 2021, 153:106542.
[6] LIU L, LI Y, NIELSEN P V, et al. Short-range airborne transmission of expiratory droplets between two people[J]. Indoor Air, 2017, 27(2):452-462.
[7] LI W X, CHONG A, LASTERNAS B, et al. Quantifying the effectiveness of desk dividers in reducing droplet and airborne virus transmission[J]. Indoor Air, 2022, 32(1):e12950.
[8] SHI Q L, HU Y Y, PENG B, et al. Effective control of SARS-CoV-2 transmission in Wanzhou, China[J]. Nature Medicine, 2021, 27(1):86-93.
[9] CAO S J, CEN D D, ZHANG W R, et al. Study on the impacts of human walking on indoor particles dispersion using momentum theory method[J]. Building and Environment, 2017, 126:195-206.
[10] MAZUMDAR S, POUSSOU S B, LIN C H, et al. Impact of scaling and body movement on contaminant transport in airliner cabins[J]. Atmospheric Environment, 2011, 45(33):6019-6028.
[11] BLOCKEN B, MALIZIA F, VAN DRUENEN T, et al. Towards aerodynamically equivalent COVID191.5 m social distancing for walking and running[Z/OL]. 2020. http://www.urbanphysics.net/Social%20Distancing%20v20_White_Paper.pdf.
[12] BHATTACHARYA A, PANTELIC J, GHAHRAMANI A, et al. Three-dimensional analysis of the effect of human movement on indoor airflow patterns[J]. Indoor Air, 2021, 31(2):587-601.
[13] WU J L, WENG W G, SHEN L C, et al. Transient and continuous effects of indoor human movement on nanoparticle concentrations in a sitting person's breathing zone[J]. Science of the Total Environment, 2022, 805:149970.
[14] LICINA D, PANTELIC J, MELIKOV A, et al. Experimental investigation of the human convective boundary layer in a quiescent indoor environment[J]. Building and Environment, 2014, 75:79-91.
[15] HAN Z Y, WENG W G, HUANG Q Y. Numerical and experimental investigation on the dynamic airflow of human movement in a full-scale cabin[J]. HVAC&R Research, 2014, 20(4):444-457.
[16] LIU Z J, LIU H Y, RONG R, et al. Effect of a circulating nurse walking on airflow and bacteria-carrying particles in the operating room:An experimental and numerical study[J]. Building and Environment, 2020, 186:107315.
[17] 吴家麟, 翁文国. 新冠肺炎病毒颗粒在空调大巴中的传播与乘客感染风险[J]. 清华大学学报(自然科学版), 2021, 61(2):89-95. WU J L, WENG W G. Transmission of COVID-19 viral particles and the risk of infection among passengers in air-conditioned buses[J]. Journal of Tsinghua University (Science and Technology), 2021, 61(2):89-95. (in Chinese)
[18] LUO N, WENG W G, XU X Y, et al. Experimental and numerical investigation of the wake flow of a human-shaped manikin:Experiments by PIV and simulations by CFD[J]. Building Simulation, 2018, 11(6):1189-1205.
[19] LIU Y, NING Z, CHEN Y, et al. Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals[J]. Nature, 2020, 582(7813):557-560.
[20] AI Z T, MAK C M, GAO N P, et al. Tracer gas is a suitable surrogate of exhaled droplet nuclei for studying airborne transmission in the built environment[J]. Building Simulation, 2020, 13(3):489-496.
[21] WU J L, WENG W G. Quantitative infection risk assessment of indoor COVID-19 airborne transmission based on rebreathed fraction[C]//The 12th International Symposium on Heating, Ventilation and Air Conditioning. Seoul, Republic of Korea, 2021.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn