Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (6): 1094-1101    DOI: 10.16511/j.cnki.qhdxxb.2022.22.036
  专刊:公共安全 本期目录 | 过刊浏览 | 高级检索 |
丙烷喷射火焰中电极形状对间隙击穿特性的影响
杨皓元1, 水凯2, 王振华1,3, 陈思怡1, 尤飞1,3, 张云4
1. 南京工业大学 安全科学与工程学院, 南京 211816;
2. 安徽海螺水泥股份有限公司, 芜湖 241000;
3. 南京工业大学 火灾与消防工程研究所, 南京 211816;
4. 中国南方电网超高压输电公司梧州局, 梧州 543002
Effects of electrode shape on the gap breakdown characteristics in propane injection flames
YANG Haoyuan1, SHUI Kai2, WANG Zhenhua1,3, CHEN Siyi1, YOU Fei1,3, ZHANG Yun4
1. College of Safety Science and Engineering, Nanjing Technology University, Nanjing 211816, China;
2. Anhui Conch Cement Co., Ltd., Wuhu 241000, China;
3. Institute of Fire Science and Engineering, Nanjing Technology University, Nanjing 211816, China;
4. China Southern Power Grid Extra High Voltage Power Transmission Company Wuzhou Branch, Wuzhou 543002, China
全文: PDF(6953 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 高压输电导线作为输电系统的核心部分,一旦发生火灾将可能造成严重的后果。目前针对电极形状对输电线路间隙击穿的定性定量研究较少。该文利用30 kV·A/50 kV高压工频放电系统、丙烷喷射模拟火源以及棒/板2种不同形状电极,从击穿电压、击穿极性特征、击穿电弧特征3个方面研究了火焰条件下电极形状对间隙击穿特性的影响。研究发现,火焰条件下间隙距离小于8.0 cm时击穿波形具有“两期两点”特征,即击穿前“放电诱导期”、临界击穿时“间隙击穿点”、击穿产生电弧后“电弧导通期”、电弧阶段性消失时“击穿消失点”。通过设置不同间隙距离,测量不同电极组合的平均击穿电压和平均击穿场强,发现随间隙距离增大,棒-棒和棒(阴)-板(阳)电极击穿电压值增加速率分别为最低和最高。相较于空气间隙击穿,火焰条件下由于存在火焰流场和热浮力,间隙击穿具有更明显的极性特征,不同电极形状会影响正负周期形成导电通道的概率。击穿方向为正周期时,棒(阴)-板(阳)电极组合击穿概率最大,击穿方向为负周期时,棒(阳)-板(阴)电极组合击穿概率最大。研究结果表明:击穿电弧演变过程可分为导通阶段、燃烧阶段和熄灭阶段,火焰条件下电弧体积明显增大,向上漂移程度更剧烈,且火焰流场和热浮力会改变电极预设放电位置。该研究对山火防治以及山区高压电网的安全运行具有重要意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨皓元
水凯
王振华
陈思怡
尤飞
张云
关键词 输电线路极性效应丙烷喷射火焰击穿电压泄漏电流放电电弧    
Abstract:High-voltage transmission wires, a key part of electrical transmission systems, can cause serious fires. There have been few studies of the effect of electrode shapes on gap breakdown around the transmission wires. This study analyzed the effect of electrode shapes on gap breakdown with ignition conditions in terms of the breakdown voltage, breakdown polarity and breakdown arc characteristics. The tests used a high voltage power frequency discharge system (type 30 kV·A/50 kV), propane injection as a simulated fire source and combinations of rod or plate electrodes. For gaps less than 8.0 cm with flames present, the breakdown waveform had a discharge induction stage, a gap breakdown point, an arc conduction stage and a breakdown vanishing point. The average breakdown voltages and the average breakdown field strengths of the various electrode combinations were measured by setting various gap sizes. The rod-rod electrode had the slowest increase of the breakdown voltage with increasing gap size while the rod (negative)-plate (positive) electrode had the fastest increase. The air gap breakdown had polarity characteristics due to the flame flow field and buoyancy. The different electrode shapes affected the probability of forming conductive channels with positive and negative periods. When the breakdown was during a positive period, the combination of negative rod and positive plate electrodes had the highest breakdown probability, while when the breakdown was during a negative period, the combination of positive rod and negative plate electrodes had the highest breakdown probability. The results show that the evolution of the breakdown arc can be divided into the conduction stage, the combustion stage and the extinction stage. A flame significantly increases the arc volume and the upward drift. The flame flow field and the buoyancy both change the electrode discharge position. This research is important for forest fire prevention and safe operation of high voltage power grids in mountainous regions.
Key wordstransmission wire    polarity effect    propane jet flame    breakdown voltage    leakage current    discharge arc
收稿日期: 2022-02-20      出版日期: 2022-05-06
基金资助:国家自然科学基金项目(51376089,50906039)
通讯作者: 尤飞,教授,E-mail:fyou@njtech.edu.cn      E-mail: fyou@njtech.edu.cn
作者简介: 杨皓元(1998-),男,硕士研究生。
引用本文:   
杨皓元, 水凯, 王振华, 陈思怡, 尤飞, 张云. 丙烷喷射火焰中电极形状对间隙击穿特性的影响[J]. 清华大学学报(自然科学版), 2022, 62(6): 1094-1101.
YANG Haoyuan, SHUI Kai, WANG Zhenhua, CHEN Siyi, YOU Fei, ZHANG Yun. Effects of electrode shape on the gap breakdown characteristics in propane injection flames. Journal of Tsinghua University(Science and Technology), 2022, 62(6): 1094-1101.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2022.22.036  或          http://jst.tsinghuajournals.com/CN/Y2022/V62/I6/1094
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] 杨赫, 徐溢卓, 李宛阳. 输电线路因山火跳闸事故统计特性与识别分析[J]. 环球市场, 2018(4):380. YANG H, XU Y Z, LI W Y. Statistical characteristics and identification analysis of power transmission line trip accident due to mountain fire[J]. Global Market, 2018(4):380. (in Chinese)
[2] 秦富仓, 王玉霞. 林火原理[M]. 北京:机械工业出版社, 2014. QIN F C, WANG Y X. Forest fire principle[M]. Beijing:China Machine Press, 2014. (in Chinese)
[3] 何知纯, 王沐雪. 输电线路山火跳闸机理分析及预防措施[J]. 科技资讯, 2019, 17(13):30-31. HE Z C, WANG M X. Power transmission lines fire trip mechanism analysis and preventive measures[J]. Science & Technology Information, 2019, 17(13):30-31. (in Chinese)
[4] 中华人民共和国住房和城乡建设部. 110 kV~750 kV架空输电线路设计规范:GB 50545-2010[S]. 北京:中国计划出版社, 2010. Ministry of Housing and Urban-Rural Development of the People's Republic of China. Code for design of 110kV-750kV overhead transmission line:GB 50545-2010[S]. Beijing:China Planning Press, 2010. (in Chinese)
[5] 文刚, 金晶, 周纺荣, 等. 110kV及以上电压等级输电线路因山火跳闸分析及防治[J]. 电工技术, 2020(19):51-54. WEN G, JIN J, ZHOU F R, et al. Analysis and prevention of wildfire tripping of 110kV and above transmission line[J]. Electric Engineering, 2020(19):51-54. (in Chinese)
[6] 清华大学深圳研究生院. 山火对高压输电线路安全运行的危害[EB/OL]. (2021-11-17)[2021-11-29]. http://inmrchina.com/. Shenzhen Graduate School of Tsinghua University. The harm of mountain fire to the safe operation of high voltage transmission line[EB/OL]. (2021-11-17)[2021-11-29]. http://inmrchina.com/. (in Chinese)
[7] 国家统计局. 2021中国统计年鉴[M]. 北京:中国统计出版社, 2021. National Bureau of Statistics. 2021 China statistical yearbook[M]. Beijing:China Statistics Press, 2021. (in Chinese)
[8] 王振华, 尤飞, 张云, 等. 易诱发输电线路跳闸的山火时空分布规律及发生频率分析[J]. 安全与环境学报, 2016, 16(3):86-93. WANG Z H, YOU F, ZHANG Y, et al. Temporal-spatial distribution regularity and the liability of the wildfire incidence frequency in inducing the power transmission line electrical trips[J]. Journal of Safety and Environment, 2016, 16(3):86-93. (in Chinese)
[9] 杨康, 陈海翔, 桑荣剑, 等. 输电线路山火跳闸机理的模拟实验研究[J]. 火灾科学, 2016, 25(2):73-78. YANG K, CHEN H X, SANG R J, et al. Simulative experimental study on wildfire induced breakdown of transmission lines[J]. Fire Safety Science, 2016, 25(2):73-78. (in Chinese)
[10] 黄勇, 周恩泽, 魏瑞增, 等. 典型植被火条件下1.2~2.7m导线-板空气间隙击穿特性[J]. 广东电力, 2021, 34(9):105-110. HUANG Y, ZHOU E Z, WEI R Z, et al. Breakdown characteristics of 1.2-2.7m conductor-plane air gap under typical vegetation flame condition[J]. Guangdong Electric Power, 2021, 34(9):105-110. (in Chinese)
[11] SADURSKI K J, REYNDERS J P. High voltage AC breakdown in presence of fires[C]//Proceedings of the 6th International Symposium on High Voltage Engineering. New Orleans, USA, 1989:1-4.
[12] WEST H J, MCMULLAN D W. Fire induced flashover of EHV transmission lines[J]. IEEE Transactions on Power Apparatus and Systems, 1979, 98(4):1142.
[13] ALBINI F A. Spot fire distance from burning trees:A predictive model[R]. Ogden, USA:Intermountain Forest and Range Experiment Station, 1979.
[14] MITCHELL J W. Power line failures and catastrophic wildfires under extreme weather conditions[J]. Engineering Failure Analysis, 2013, 35:726-735.
[15] WINANDS G J J, LIU Z, PEMEN A J M, et al. Analysis of streamer properties in air as function of pulse and reactor parameters by ICCD photography[J]. Journal of Physics D:Applied Physics, 2008, 41(23):234001.
[16] BRIELS T M P, VAN VELDHUIZEN E M, EBERT U. Time resolved measurements of streamer inception in air[J]. IEEE Transactions on Plasma Science, 2008, 36(4):908-909.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn