Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (12): 1945-1952    DOI: 10.16511/j.cnki.qhdxxb.2022.22.039
  水利水电工程 本期目录 | 过刊浏览 | 高级检索 |
气候变化下的黄河源区化学风化
陈毅, 吴保生, 李敏慧
清华大学 水沙科学与水利水电工程国家重点实验室, 北京 100084
Chemical weathering to climatic variations in the Yellow River source region
CHEN Yi, WU Baosheng, LI Minhui
State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(4436 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 高海拔流域是全球气候变暖背景下地球系统演变的重要前哨。该研究基于青藏高原黄河源区唐乃亥水文站2002—2019年间的径流量序列与水化学数据重建了该时期的化学风化过程, 探讨了气候变化下青藏高原黄河源区化学风化特征。2002—2019年, 黄河源区温度明显上升, 降水量和径流量出现增长; 年度化学风化速率在30.9~78 t·km-2之间, 平均值为53.2 t·km-2, 是全球平均化学风化速率的2倍以上。黄河源区年度化学风化速率随流域温度的上升呈现增加的趋势, 平均每年增加1.13 t·km-2。在全球气候变暖背景下, 青藏高原高海拔流域在陆地与海洋之间的物质交换和平衡大气CO2浓度中均发挥着重要作用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈毅
吴保生
李敏慧
关键词 青藏高原黄河源区化学风化气候变化    
Abstract:High-elevation catchments are critical indicators of the earth's response to global warming. This study collected water chemistry data for runoff in the Yellow River source region from 2002 to 2019 to reconstruct the chemical weathering processes. From 2002 to 2019, the temperature in this region increased significantly along with the precipitation and runoff. The annual chemical weathering rates in this region ranged from 30.9 to 78 t穔m-2, with an average of 53.2 t穔m-2, which is more than twice the average chemical weathering rate of all global rivers. The annual chemical weathering processes in this region increased with increasing temperature at a rate of 1.13 t穔m-2/a. In the context of global warming, the Tibetan high-elevation catchments play important roles in the material exchanges between the land and the oceans and contribute to the stabilization of atmospheric CO2.
Key wordsTibetan Plateau    Yellow River source region    chemical weathering    climatic variation
收稿日期: 2022-02-12      出版日期: 2022-11-10
基金资助:吴保生, 教授, E-mail:baosheng@tsinghua.edu.cn
引用本文:   
陈毅, 吴保生, 李敏慧. 气候变化下的黄河源区化学风化[J]. 清华大学学报(自然科学版), 2022, 62(12): 1945-1952.
CHEN Yi, WU Baosheng, LI Minhui. Chemical weathering to climatic variations in the Yellow River source region. Journal of Tsinghua University(Science and Technology), 2022, 62(12): 1945-1952.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2022.22.039  或          http://jst.tsinghuajournals.com/CN/Y2022/V62/I12/1945
  
  
  
  
  
  
  
  
  
[1] SYVITSKI J, ÁNGEL J R, SAITO Y, et al. Earth's sediment cycle during the Anthropocene[J]. Nature Reviews Earth & Environment, 2022, 3(3): 179-196.
[2] LI X Y, WANG N L, DING Y J, et al. Globally elevated chemical weathering rates beneath glaciers[J]. Nature Communications, 2022, 13(1): 407.
[3] HILTON R G, WEST A J. Mountains, erosion and the carbon cycle[J]. Nature Reviews Earth & Environment, 2020, 1(6): 284-299.
[4] YAO T D, XUE Y K, CHEN D L, et al. Recent third pole's rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: Multidisciplinary approach with observations, modeling, and analysis[J]. Bulletin of the American Meteorological Society, 2019, 100(3): 423-444.
[5] LI D F, LU X X, OVEREEM I, et al. Exceptional increases in fluvial sediment fluxes in a warmer and wetter High Mountain Asia[J]. Science, 2021, 374(6567): 599-603.
[6] ZHI W, WILLIAMS K H, CARROLL R W H, et al. Significant stream chemistry response to temperature variations in a high-elevation mountain watershed[J]. Communications Earth & Environment, 2020, 1: 43.
[7] ZHANG F, SHI X N, ZENG C, et al. Variation and influence of riverine sediment transport from Tibetan Plateau, China[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(11): 1274-1284. (in Chinese) 张凡, 史晓楠, 曾辰, 等. 青藏高原河流输沙量变化与影响[J]. 中国科学院院刊, 2019, 34(11): 1274-1284.
[8] LI Z G, LYU S H, CHEN H, et al. Changes in climate and snow cover and their synergistic influence on spring runoff in the source region of the Yellow River[J]. Science of the Total Environment, 2021, 799: 149503.
[9] Yellow River Conservancy Commission. Hydrologic yearbook of China: Hydrological data of Yellow River basin[M]. Beijing: Bureau of Hydrology, Ministry of Water Resources, the People's Republic of China, 2002-2019. (in Chinese) 黄河水利委员会. 中华人民共和国水文年鉴: 黄河流域水文资料[M]. 北京: 中华人民共和国水利部水文司, 2002-2019.
[10] ZHANG D, ZHAO Z Q, LI X D, et al. Assessing the oxidative weathering of pyrite and its role in controlling atmospheric CO2 release in the eastern Qinghai-Tibet Plateau[J]. Chemical Geology, 2020, 543: 119605.
[11] LI S L, XIA X H, ZHOU B, et al. Chemical balance of the Yellow River source region, the northeastern Qinghai-Tibetan Plateau: Insights about critical zone reactivity[J]. Applied Geochemistry, 2018, 90: 1-12.
[12] ZHOU C Y, TANG X Y, LI Y Q. Overview of the research on the water vapor and water vapor transport over the Tibetan Plateau and its surroundings[J]. Plateau and Mountain Meteorology Research, 2012, 32(3): 76-83. (in Chinese) 周长艳, 唐信英, 李跃清. 青藏高原及周边地区水汽、水汽输送相关研究综述[J]. 高原山地气象研究, 2012, 32(3): 76-83.
[13] ZHANG Y Y, ZHANG S F, ZHAI X Y, et al. Runoff variation in the Three Rivers Source Region and its response to climate change[J]. Acta Geographica Sinica, 2012, 67(1): 71-82. (in Chinese) 张永勇, 张士锋, 翟晓燕, 等. 三江源区径流演变及其对气候变化的响应[J]. 地理学报, 2012, 67(1): 71-82.
[14] WEST A J, GALY A, BICKLE M. Tectonic and climatic controls on silicate weathering[J]. Earth and Planetary Science Letters, 2005, 235(1-2): 211-228.
[15] CHEN J S, WANG F Y, MEYBECK M, et al. Spatial and temporal analysis of water chemistry records (1958—2000) in the Huanghe (Yellow River) basin[J]. Global Biogeochemical Cycles, 2005, 19(3): GB3016.
[16] WU W H, XU S J, YANG J D, et al. Silicate weathering and CO2 consumption deduced from the seven Chinese rivers originating in the Qinghai-Tibet Plateau[J]. Chemical Geology, 2008, 249(3-4): 307-320.
[17] CHEN Y, WU B S, XIONG Z Y, et al. Evolution of eastern Tibetan river systems is driven by the indentation of India[J]. Communications Earth & Environment, 2021, 2(1): 256.
[18] GIBBS R J. Mechanisms controlling world water chemistry[J]. Science, 1970, 170(3962): 1088-1090.
[19] MAGER S M, DIACK E E, HORTON S L. Catchment-scale weathering fluxes in the Southern Alps, New Zealand[J]. Geomorphology, 2018, 316: 24-34.
[20] CLOW D W, MAST M A. Mechanisms for chemostatic behavior in catchments: Implications for CO2 consumption by mineral weathering[J]. Chemical Geology, 2010, 269(1-2): 40-51.
[21] TIPPER E T, BICKLE M J, GALY A, et al. The short term climatic sensitivity of carbonate and silicate weathering fluxes: Insight from seasonal variations in river chemistry[J]. Geochimica et Cosmochimica Acta, 2006, 70(11): 2737-2754.
[22] GALY A, FRANCE-LANORD C. Weathering processes in the Ganges-Brahmaputra basin and the riverine alkalinity budget[J]. Chemical Geology, 1999, 159(1-4): 31-60.
[23] ROY S, GAILLARDET J, ALLÈGRE C J. Geochemistry of dissolved and suspended loads of the Seine River, France: Anthropogenic impact, carbonate and silicate weathering[J]. Geochimica et Cosmochimica Acta, 1999, 63(9): 1277-1292.
[24] GAILLARDET J, DUPRÉ B, LOUVAT P, et al. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers[J]. Chemical Geology, 1999, 159(1-4): 3-30.
[25] LEE Y J, CHEN P H, LEE T Y, et al. Temporal variation of chemical weathering rate, source shifting and relationship with physical erosion in small mountainous rivers, Taiwan, China[J]. CATENA, 2020, 190: 104516.
[1] 周雄冬, 刘逸博, 徐梦珍, 张家豪, 王聪聪. 高原河流底栖动物对侧向水文连通性的响应:以泉吉河为例[J]. 清华大学学报(自然科学版), 2023, 63(5): 818-829.
[2] 宋媛媛, 姚恩建, 徐洪磊, 黄全胜, 吴睿, 王人洁. 交通运输领域应对气候变化策略及路径[J]. 清华大学学报(自然科学版), 2023, 63(11): 1707-1718.
[3] 杨文静, 赵建世, 赵勇, 王庆明. 基于结构方程模型的蒸散发归因分析[J]. 清华大学学报(自然科学版), 2022, 62(3): 581-588.
[4] 李敏慧, 陈毅, 吴保生. 青藏高原典型流域河网特性及控制因素[J]. 清华大学学报(自然科学版), 2020, 60(11): 951-957.
[5] 马丁, 陈文颖. 基于中国TIMES模型的碳排放达峰路径[J]. 清华大学学报(自然科学版), 2017, 57(10): 1070-1075.
[6] 刘乐, 王兆印, 余国安, 栗腾. 青藏高原河网统计规律及高原抬升的影响[J]. 清华大学学报(自然科学版), 2015, 55(9): 964-970.
[7] 王利宁, 陈文颖. 不同分配方案下各国碳排放额及公平性评价[J]. 清华大学学报(自然科学版), 2015, 55(6): 672-677,683.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn