Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (10): 1660-1667    DOI: 10.16511/j.cnki.qhdxxb.2022.22.042
  核能与新能源技术 本期目录 | 过刊浏览 | 高级检索 |
空间堆闭式Brayton循环回热器传热-阻力耦合特性
马文魁, 杨小勇, 王捷
清华大学 核能与新能源技术研究院, 先进核能技术协同创新中心, 先进反应堆工程与安全教育部重点实验室, 北京 100084
Heat transfer-resistance coupling characteristics of recuperator in closed Brayton cycles for space reactors
MA Wenkui, YANG Xiaoyong, WANG Jie
Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
全文: PDF(7713 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 空间堆Brayton循环动力系统具有能量密度高、寿命长、运行稳定等优点,能满足未来大功率航天器的电力需求。回热器通过回收涡轮排气废热减小堆芯吸热量,是提高闭式Brayton循环性能的关键设备。该文基于Reynolds比拟理论,建立回热器传热和压损关联的空间Brayton循环热力学模型,分析了回热度对循环性能和关键参数的影响,并优化得到了循环最佳方案。结果表明:回热器传热和压损存在内在联系,压损随回热度的增大而增大。当回热度较低时,循环电效率随回热度单调增加;当回热度增加至接近1,压损增加导致涡轮膨胀比下降。闭式Brayton循环电效率先增加后减小,存在最佳回热度0.954 8和最大循环电效率30.23%。分析了温比、压比、氦氙工质组分等参数对系统最佳回热度的影响机理。以循环电效率和比功为目标,优化得到循环的理论边界,最佳电效率方案电效率为 32.92%,最佳比功方案比功为 65.78 kJ·kg-1
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马文魁
杨小勇
王捷
关键词 空间堆闭式Brayton循环回热器最佳回热度    
Abstract:Brayton cycle based space reactors have high energy densities,long lifetimes and stable operations,so they are recommended for future high-powered spacecraft.The recuperator is the key component for improving the closed Brayton cycle efficiency by recovering waste heat from the turbine exhaust to reduce the required reactor power.Reynolds analogy was used to develop a thermodynamic model for the recuperator heat and pressure losses in a space-based Brayton cycle to investigate the influence of the recuperator effectiveness on the cycle electrical efficiency and to optimize the cycle design.The results indicate that the heat transfer and pressure losses are related,with the pressure losses increasing as the recuperator effectiveness increases.When the effectiveness is low,the cycle electrical efficiency increases as the recuperator effectiveness increases.When the recuperator effectiveness increases to close to 1,increased pressure losses reduces the expansion ratio of the turbine,so the cycle electrical efficiency reaches a maximum and then decreases.Therefore,each cycle has a best recuperator effectiveness of 0.954 8 that gives the maximum cycle electrical efficiency of 30.23%.This study also analyzed the influence of the temperature ratio,the pressure ratio and the helium-xenon composition on the optimal recuperator effectiveness.This study gives the optimal operation conditions for the best cycle electrical efficiency of 32.92% and the optimal specific work of 65.78 kJ·kg-1 for the given space-based closed Brayton cycle.
Key wordsspace reactor    closed Brayton cycle    recuperator    best recuperator effectiveness
收稿日期: 2022-03-17      出版日期: 2022-09-03
基金资助:杨小勇,副研究员,E-mail:xy-yang@tsinghua.edu.cn
引用本文:   
马文魁, 杨小勇, 王捷. 空间堆闭式Brayton循环回热器传热-阻力耦合特性[J]. 清华大学学报(自然科学版), 2022, 62(10): 1660-1667.
MA Wenkui, YANG Xiaoyong, WANG Jie. Heat transfer-resistance coupling characteristics of recuperator in closed Brayton cycles for space reactors. Journal of Tsinghua University(Science and Technology), 2022, 62(10): 1660-1667.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2022.22.042  或          http://jst.tsinghuajournals.com/CN/Y2022/V62/I10/1660
  
  
  
  
  
  
  
  
  
  
  
[1] ZHANG R, GUO K L, WANG C L, et al. Thermal-hydraulic analysis of gas-cooled space nuclear reactor power system with closed Brayton cycle[J]. International Journal of Energy Research, 2021, 45(8):11851-11867.
[2] DAVIS J E. Design and fabrication of the Brayton rotating unit[R]. Washington DC, USA:NASA, 1972.
[3] DOBLER F X. Analysis, design, fabrication and testing of the mini-Brayton rotating unit (MINI-BRU). Volume 2:Figures and drawings[R]. Washington DC, USA:NASA, 1978.
[4] WAGANER L M, DRIEMEYER D E, LEE V D. Inertial fusion energy reactor design studies:Prometheus-L, Prometheus-H[R]. Hyannis, USA:McDonnell Douglas Corporation, 1992.
[5] EL-GENK M S, TOURNIER J M. On the use of noble gases and binary mixtures as reactor coolants and CBC working fluids[J]. Energy Conversion and Management, 2008, 49(7):1882-1891.
[6] 张秀.空间核能系统布雷顿循环性能评估及优化[D].哈尔滨:哈尔滨工业大学, 2019. ZHANG X. Performance analysis and optimization of space nuclear Brayton cycle system[D]. Harbin:Harbin Institute of Technology, 2019.(in Chinese)
[7] LI Z, YANG X Y, WANG J, et al. Thermodynamic optimization and analysis of Brayton-cycle system for space power reactor[J]. Atomic Energy Science and Technology, 2017, 51(7):1173-1180.
[8] 李智,杨小勇,王捷,等.空间反应堆Brayton循环的热力学特性[J].清华大学学报(自然科学版), 2017, 57(5):537-543, 549. LI Z, YANG X Y, WANG J, et al. Thermodynamic characteristics of Brayton cycle of space reactor[J]. Journal of Tsinghua University (Natural Science Edition), 2017, 57(5):537-543, 549.(in Chinese)
[9] MA W K, YE P, ZHAO G, et al. Effect of cooling schemes on performance of MW-class space nuclear closed Brayton cycle[J]. Annals of Nuclear Energy, 2021, 162:108485.
[10] EL-GENK M S, TOURNIER J M. Noble gas binary mixtures for gas-cooled reactor power plants[J]. Nuclear Engineering and Design, 2008, 238(6):1353-1372.
[11] 李智.空间反应堆动态能量转换系统特性研究[D].北京:清华大学, 2017. LI Z. Research on the dynamic energy conversion system for space nuclear reactor[D]. Beijing:Tsinghua University, 2017.(in Chinese)
[12] VON ARX A V, CEYHAN I. Laminar heat transfer for low Prandtl number gases[J]. AIP Conference Proceedings, 1991, 217(2):719-722.
[13] 钱颂文.换热器设计手册[M].北京:化学工业出版社, 2002. QIAN S W. Heat exchanger design manual[M]. Beijing:Chemical Industry Press, 2002.(in Chinese)
[14] GALLO B M, EL-GENK M S. Brayton rotating units for space reactor power systems[J]. Energy Conversion and Management, 2009, 50(9):2210-2232.
[15] QU X H, YANG X Y, WANG J. A study on different thermodynamic cycle schemes coupled with a high temperature gas-cooled reactor[J]. Annals of Nuclear Energy, 2017, 106:185-194.
[16] EL-GENK M S, GALLO B M. High-power Brayton rotating unit for reactor and solar dynamic power systems[J]. Journal of Propulsion and Power, 2010, 26(1):167-176.
[17] EL-GENK M S, TOURNIER J M. On the use of noble gases and binary mixtures as reactor coolants and CBC working fluids[J]. Energy Conversion and Management, 2008, 49(7):1882-1891.
[18] TOURNIER J M P, EL-GENK M S. Properties of noble gases and binary mixtures for closed Brayton cycle applications[J]. Energy Conversion and Management, 2008, 49(3):469-492.
[19] TOURNIER J M, EL-GENK M, GALLO B. Best estimates of binary gas mixtures properties for closed Brayton cycle space applications[C]//4th International Energy Conversion Engineering Conference and Exhibit (IECEC). San Diego, USA:AIAA, 2006:4154.
[1] 王捷, 王宏, 赵钢, 杨小勇, 叶萍, 曲新鹤. 高温气冷堆氦气透平压气机和主氦风机研究进展[J]. 清华大学学报(自然科学版), 2021, 61(4): 350-360.
[2] 杨谢, 石磊. 空间核反应堆电源闭式Brayton循环热力学分析[J]. 清华大学学报(自然科学版), 2018, 58(9): 821-826.
[3] 曲新鹤, 杨小勇, 王捷. 商用高温气冷堆氦气透平循环发电热力学参数分析和优化[J]. 清华大学学报(自然科学版), 2017, 57(10): 1114-1120.
[4] 李骁, 杨小勇, 张佑杰. HTR-10GT充装量调节特性及其机理[J]. 清华大学学报(自然科学版), 2015, 55(9): 1010-1016,1022.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn