Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2021, Vol. 61 Issue (12): 1423-1437    DOI: 10.16511/j.cnki.qhdxxb.2022.25.001
  专栏:关键核心技术 本期目录 | 过刊浏览 | 高级检索 |
面向未来燃气轮机的先进燃烧技术综述
李苏辉, 张归华, 吴玉新
清华大学 能源与动力工程系, 教育部热科学重点实验室, 北京 100084
Advanced combustion technologies for future gas turbines
LI Suhui, ZHANG Guihua, WU Yuxin
Key Laboratory of Thermal Sciences, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(6806 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 为满足日趋严格的环保法规和减少碳排放的需求,燃气轮机的技术发展呈现出低排放、高参数、多燃料和宽工况灵活运行的趋势。现有的单一旋流贫预混燃烧技术已经不能适应这些新的变化。因此,该文挑选了10种有潜力的先进燃烧技术展开综述,首先简要介绍其原理和发展现状,然后针对燃气轮机未来发展趋势,从技术成熟度、污染物排放等方面分析其应用前景和可行性,并提出下一步需要突破的技术瓶颈和关键问题。在此基础上,提出了一种评价方法,分析和比较各技术的综合性能和实施难易程度,为技术路线和攻关方向的筛选提供参考依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李苏辉
张归华
吴玉新
关键词 燃气轮机燃烧技术燃料灵活性NOx碳排放    
Abstract:Gas turbine technology development trends have changed dramatically to meet increasingly stringent environmental regulations and reduce CO2 emissions. However, current lean premixed combustion based on swirling flows cannot adapt to these changes. Therefore, advanced combustion technologies are reviewed here to identify new gas turbine designs by introducing their working principles, R&D results, and analyses of their readiness levels and key performance metrics such as NOx emissions. A method is given to evaluate their overall performance and the ease-of-implementation to narrow the technology pathway choices and identify major research directions.
Key wordsgas turbines    combustion technologies    fuel flexibility    NOx    carbon emissions
收稿日期: 2021-02-10      出版日期: 2021-12-11
基金资助:国家自然科学基金资助项目(51776105);国家科技重大专项(2019-Ⅲ-0018-0062,2019-Ⅰ-0022-0021)
引用本文:   
李苏辉, 张归华, 吴玉新. 面向未来燃气轮机的先进燃烧技术综述[J]. 清华大学学报(自然科学版), 2021, 61(12): 1423-1437.
LI Suhui, ZHANG Guihua, WU Yuxin. Advanced combustion technologies for future gas turbines. Journal of Tsinghua University(Science and Technology), 2021, 61(12): 1423-1437.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2022.25.001  或          http://jst.tsinghuajournals.com/CN/Y2021/V61/I12/1423
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] DAVIS L B, WASHAM R M. Development of a dry low NOx combustor[C]//ASME 1989 International Gas Turbine and Aeroengine Congress and Exposition. Toronto, Canada:ASME, 1989.
[2] DAVIS L B. Dry low NOx combustion systems for GE heavy-duty gas turbines[C]//ASME 1989 International Gas Turbine and Aeroengine Congress and Exhibition. Birmingham, USA:ASME, 1996.
[3] VANDERVORT C L. 9 ppm NOx/CO combustion system for "F" class industrial gas turbines[J]. Journal of Engineering for Gas Turbines and Power, 2001, 123(2):317-321.
[4] TANAKA Y, NOSE M, NAKAO M, et al. Development of low NOx combustion system with EGR for 1700℃-class gas turbine[J]. Mitsubishi Heavy Industries Technical Review, 2013, 50(1):1-6.
[5] HADA S, TSUKAGOSHI K, MASADA J, et al. Test results of the world's first 1600℃ J-series gas turbine[J]. Mitsubishi Heavy Industries Technical Review, 2012, 49(1):18-23.
[6] LEONARD G, STEGMAIER J. Development of an aeroderivative gas turbine dry low emissions combustion system[J]. Journal of Engineering for Turbines and Power, 1994, 116(3):542-546.
[7] GOH E, SIRIGNANO M, LI J, et al. Prediction of minimum achievable NOx levels for fuel-staged combustors[J]. Combustion and Flame, 2019, 200:276-285.
[8] U.S. Energy Information Administration. International energy outlook[R]. Washington, DC:U.S. Energy Information Administration, 2019.
[9] 郭磊, 宋文蛰, 王相平, 等. IGCC燃用低热值燃料的燃气轮机运行性能优化[J]. 中国电力, 2019, 52(2):14-19. GUO L, SONG W Z, WANG X P, et al. Performance optimization of the IGCC gas turbine fueled with low heat value syngas[J]. Electric Power, 2019, 52(2):14-19. (in Chinese)
[10] KOBAYASHI H, HAYAKAWA A, SOMARATHNE K D K A, et al. Science and technology of ammonia combustion[J]. Proceedings of the Combustion Institute, 2019, 37(1):109-133.
[11] ROMOSER C E, HARPER J, WILSON M B, et al. E-class late fuel staging technology delivers flexibility leap[C]//ASME Turbo Expo 2016:Turbomachinery Technical Conference and Exposition. Seoul, South Korea:ASME, 2016.
[12] KARIM H, NATARAJAN J, NARRA V, et al. Staged combustion system for improved emissions operability and flexibility for 7HA class heavy duty gas turbine engine[C]//ASME Turbo Expo 2017:Turbomachinery Technical Conference and Exposition. Charlotte, North Carolina, USA:ASME, 2017.
[13] PENNELL D A, BOTHIEN M R, CIANI A, et al. An introduction to the Ansaldo GT36 constant pressure sequential combustor[C]//ASME Turbo Expo 2017:Turbomachinery Technical Conference and Exposition. Charlotte, North Carolina, USA:ASME, 2017.
[14] WINKLER D, GENG W, ENGELBRECHT G, et al. Staged combustion concept for increased operational flexibility of gas turbines[C]//Global Power and Propulsion Society Forum. Zurich, Switzerland:Global Power and Propulsion Society, 2017, 1:184-194.
[15] HOFERICHTER V, AHRENS D, KOLB M, et al. A reactor model for the NOx formation in a reacting jet in hot cross flow under atmospheric and high pressure conditions[C]//ASME Turbo Expo 2014:Turbine Technical Conference and Exposition. Düsseldorf, Germany:ASME, 2014.
[16] WEINZIERL J, KOLB M, AHRENS D, et al. Large-eddy simulation of a reacting jet in cross flow with NOx prediction[J]. Journal of Engineering for Gas Turbines and Power, 2017, 139(3):031502.
[17] 钱文凯, 朱民, 李苏辉, 等. 燃气轮机分级燃烧室NOx排放动力学模拟研究[J]. 动力工程学报, 2019, 39(1):33-40. QIAN W K, ZHU M, LI S H, et al. A kinetics study on NOx emission of an axially-staged gas turbine combustor[J]. Journal of Chinese Society of Power Engineering, 2019, 39(1):33-40. (in Chinese)
[18] 郑祥龙. 燃料轴向分级燃烧污染物排放及其交叉射流火焰特性研究[D]. 北京:中国科学院大学, 2020. ZHENG X L. Investigations on the pollutant emissions of the axial-fuel-staged combustion and characteristics of the jet-in-crossflow flames[D]. Beijing:University of Chinese Academy of Sciences, 2020. (in Chinese)
[19] SAMULSEN S. Rich burn, quick-mix, lean burn (RQL) combustor, the gas turbine handbook. Section 3. 2. 1. 3. U. S. Department of Energy, National Energy Technology Laboratory, Morgantown, WV, 2006.
[20] MCKINNEY R, CHEUNG A, SOWA W, et al. The Pratt & Whitney TALON X low emissions combustor:Revolutionary results with evolutionary technology[C]//45th AIAA Aerospace Sciences Meeting and Exhibit. Reno, USA:AIAA, 2007.
[21] FEITELBERG A S, LACEY M A. The GE rich-quench-lean gas turbine combustor[J]. Journal of Engineering for Turbines and Power, 1998, 120(3):502-508.
[22] STRAUB D L, CASLETON K H, LEWIS R E, et al. Assessment of rich-burn, quick-mix, lean-burn trapped vortex combustor for stationary gas turbines[J]. Journal of Engineering for Gas Turbines and Power, 2005, 127(1):36-41.
[23] SULLIVAN-LEWIS E, HACK R, MCDONELL V. Performance assessment of a gas fired RQL combustion system operated in a vitiated air stream[C]//48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Atlanta, USA:AIAA, 2012.
[24] LIU H Y, QIAN W K, ZHU M, et al. Kinetics modeling on NOx emissions of a syngas turbine combustor using rich-burn, quick-mix, lean-burn combustion method[J]. Journal of Engineering for Gas Turbines and Power, 2020, 142(2):021005.
[25] IKI N, KURATA O, MATSUNUMA T, et al. NOx reduction in a swirl combustor firing ammonia for a micro gas turbine[C]//ASME Turbo Expo 2018:Turbomachinery Technical Conference and Exposition. Oslo, Norway:ASME, 2018.
[26] LI S, ZHANG S, ZHOU H, et al. Analysis of air-staged combustion of NH3/CH4 mixture with low NOx emission at gas turbine conditions in model combustors[J]. Fuel, 2019, 237:50-59.
[27] LI Z X, LI S H. Kinetics modeling of NOx emissions characteristics of a NH3/H2 fueled gas turbine combustor[J]. International Journal of Hydrogen Energy, 2021, 46(5):4526-4537.
[28] YORK W D, ZIMINSKY W S, YILMAZ E. Development and testing of a low NOx hydrogen combustion system for heavy-duty gas turbines[J]. Journal of Engineering for Gas Turbines and Power, 2013, 135(2):022001.
[29] LEE H, HERNANDEZ S, MCDONELL V, et al. Development of flashback resistant low-emission micro-mixing fuel injector for 100% hydrogen and syngas fuels[C]//ASME Turbo Expo 2009:Power for Land, Sea, and Air. Orlando, USA:ASME, 2009.
[30] HUGHES M J, BERRY J D. Advanced multi-tube mixer combustion for 65% efficiency[C]. U.S. DoE UTSR workshop. Orlando, USA:U.S. DoE, 2019.
[31] HAQUE M A, NEMITALLAH M A, ABDELHAFEZ A, et al. Review of fuel/oxidizer-flexible combustion in gas turbines[J]. Energy & Fuels, 2020, 34(9):10459-10485.
[32] ELKADY A M, EVULET A, BRAND A, et al. Exhaust gas recirculation in DLN F-class gas turbines for post-combustion CO2 capture[C]//ASME Turbo Expo 2008:Power for Land, Sea, and Air. Berlin, Germany:ASME, 2008.
[33] LI H J, ELKADY A M, EVULET A. Effect of exhaust gas recirculation on NOx formation in premixed combustion system[C]//47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition. Orlando, USA:AIAA, 2009.
[34] PFEFFERLE W C, CARRUBBA R V, HECK R M, et al. Catathermal combustion new process for low emissions fuel conversion[C]//ASME-AMER SOC Mechanical Engineering. New York, USA:ASME-AMER, 1976, 98(5):94-95.
[35] SMITH L, ETEMAD S, KARIM H, et al. Catalytic combustion, the gas turbine handbook[M]. Section 3. 2. 2. U.S. Department of Energy, National Energy Technology Laboratory, Morgantown, 2006.
[36] FANT D B, JACKSON G S, KARIM H, et al. Status of catalytic combustion R&D for the department of energy advanced turbine systems program[J]. Journal of Engineering for Gas Turbines and Power, 2000, 122(2):293-300.
[37] YEE D Y, LUNDBERG K, WEAKLEY C K. Field demonstration of a 1.5 MW industrial gas turbine with a low emissions catalytic combustion system[J]. Journal of Engineering for Gas Turbines and Power, 2001, 123(3):550-556.
[38] SMITH L L, KARIM H, CASTALDI M J, et al. Rich-catalytic lean-burn combustion for low-single-digit NOx gas turbines[J]. Journal of Engineering for Gas Turbines and Power, 2005, 127(1):27-35.
[39] LIEUWEN T, MCDONELL V, SANTAVICCA D, et al. Burner development and operability issues associated with steady flowing syngas fired combustors[J]. Combustion Science and Technology, 2008, 180(6):1169-1192.
[40] CHENG R K. Ultralean low swirl burner:5735681. 1998-04-07.
[41] CHENG R K. Low swirl combustion, the gas turbine handbook[M]. Section 3. 2. 1. 4. 2. U. S. Department of Energy, National Energy Technology Laboratory, Morgantown, WV, 2006.
[42] CHENG R K, LITTLEJOHN D, NAZEER W A, et al. Laboratory studies of the flow field characteristics of low-swirl injectors for adaptation to fuel-flexible turbines[J]. Journal of Engineering for Gas Turbines and Power, 2008, 130(2):021501.
[43] EMADI M, KAUFMAN K, BURKHALTER M W, et al. Examination of thermo-acoustic instability in a low swirl burner[J]. International Journal of Hydrogen Energy, 2012, 40(39):13594-13603.
[44] OCHRYMIUK T, BADUR J. Flameless oxidation at the GT26 gas turbine:Numerical study via full chemistry[J]. Task Quarterly, 2001, 5(2):239-246.
[45] LEVY Y, SHERBAUM V, ARFI P. Basic thermodynamics of FLOXCOM, the low-NOx gas turbines adiabatic combustor[J]. Applied Thermal Engineering, 2004, 24(11-12):1593-1605.
[46] KRUSE S, KERSCHGENS B, BERGER L, et al. Experimental and numerical study of MILD combustion for gas turbine applications[J]. Applied Energy, 2015, 148:456-465.
[47] PERPIGNAN A A V, RAO A G, ROEKAERTS D J E M. Flameless combustion and its potential towards gas turbines[J]. Progress in Energy and Combustion Science, 2018, 69:28-62.
[48] KHALLAGHI N, HANAK D P, MANOVIC V. Techno-economic evaluation of near-zero CO2 emission gas-fired power generation technologies:A review[J]. Journal of Natural Gas Science and Engineering, 2020, 74:103095.
[49] SAANUM I, DITARANTO M. Experimental study of oxy-fuel combustion under gas turbine conditions[J]. Energy & Fuels, 2017, 31(4):4445-4451.
[50] LIU C Y, CHEN G, SIPÖCZ N, et al. Characteristics of oxy-fuel combustion in gas turbines[J]. Applied Energy, 2012, 89(1):387-394.
[51] QIAN W K, LIU H Y, ZHU M, et al. Kinetics study of a staged combustor concept for oxy-fuel combustion gas turbine cycles[C]//ASME Turbo Expo 2019:Turbomachinery Technical Conference and Exposition. Phoenix, Arizona, USA:ASME, 2019.
[52] SUNDKVIST S G, DAHLQUIST A, JANCZEWSKI J, et al. Concept for a combustion system in oxy-fuel gas turbine combined cycles[J]. Journal of Engineering for Gas Turbines and Power, 2014, 136(10):101513.
[53] 李苏辉, 钱文凯, 朱民. 一种分级供氧燃烧室及燃气轮机分级供氧燃烧方法:201910492576.7. 2020-10-13. LI S H, QIAN W K, ZHU M. Graded oxygen supply combustion chamber and graded oxygen supply combustion method of combustion gas turbine:201910492576.7. 2020-10-13. (in Chinese)
[54] MCCLUNG A, BRUN K, DELIMONT J. Comparison of supercritical carbon dioxide cycles for oxy-combustion[C]//ASME Turbo Expo 2015:Turbine Technical Conference and Exposition. Montreal, Quebec, Canada:ASME, 2015.
[55] COOGAN S, GAO X, MCCLUNG A, et al. Evaluation of kinetic mechanisms for direct fired supercritical oxy-combustion of natural gas[C]//ASME Turbo Expo 2016:Turbomachinery Technical Conference and Exposition. Seoul, South Korea:ASME, 2016.
[56] DELIMONT J, MCCLUNG A, PORTNOFF M. Direct fired oxy-fuel combustor for sCO2 power cycles:1 MW scale design and preliminary bench top testing[C]//ASME Turbo Expo 2017:Turbomachinery Technical Conference and Exposition. Charlotte, North Carolina, USA:ASME, 2017.
[57] DELIMONT J, MCCLUNG A, PORTNOFF M. Simulation of a direct fired oxy-fuel combustor for sCO2 power cycles[C]//The Fifth International Symposium on Supercritical CO2 Power Cycles. San Antonio, USA:SWRI, 2016, 2:29-31.
[58] DELIMONT J, ANDREWS N, CHORDIA L. Computational modeling of a direct fired oxy-fuel combustor for sCO2 power cycles[C]//The 6th International Supercritical CO2 Power Cycles Symposium. Pittsburg, USA:SWRI, 2018, 134:1-11.
[59] STRAKEY P A. Oxy-combustion modeling for direct-fired supercritical CO2 power cycles[J]. Journal of Energy Resources Technology, 2019, 141(7):070706.
[60] CHOWDHURY A S M A R, BADHAN A, CABRERA L A, et al. Conceptual design of a supercritical oxy-fuel combustor based on LOx/methane rocket engine technologies[C]//14th International Energy Conversion Engineering Conference. Salt Lake City, USA:AIAA, 2016.
[61] MANIKANTACHARI K R V, MARTIN S, VESELY L, et al. A strategy of reactant mixing in methane direct-fired sCO2 combustors[C]//ASME Turbo Expo 2018:Turbomachinery Technical Conference and Exposition. Oslo, Norway:ASME, 2018.
[62] KARIMI M, OCHS B, LIU Z F, et al. Measurement of methane autoignition delays in carbon dioxide and argon diluents at high pressure conditions[J]. Combustion and Flame, 2019, 204:304-319.
[63] GVLEN S C. Pressure gain combustion advantage in land-based electric power generation[J]. Journal of the Global Power and Propulsion Society, 2017, 1:288-302.
[64] KAILASANATH K. Review of propulsion applications of detonation waves[J]. AIAA Journal, 2000, 38(9):1698-1708.
[65] LU F K, BRAUN E M. Rotating detonation wave propulsion:Experimental challenges, modeling, and engine concepts[J]. Journal of Propulsion and Power, 2014, 30(5):1125-1142.
[66] ANAND V, GUTMARK E. A review of pollutants emissions in various pressure gain combustors[J]. International Journal of Spray and Combustion Dynamics, 2019, 11, doi:10.1177/1756827719870724.
[67] ZHOU R, WU D, WANG J P. Progress of continuously rotating detonation engines[J]. Chinese Journal of Aeronautics, 2016, 29(1):15-29.
[68] WANG B, WANG J P. Introduction to the special section on recent progress on rotating detonation and its application[J]. AIAA Journal, 2020, 58(12):4974-4975.
[69] MA J Z, LUAN M Y, XIA Z J, et al. Recent progress, development trends, and consideration of continuous detonation engines[J]. AIAA Journal, 2020, 58(12):4976-5035.
[70] BOLLAND O, MATHIEU P. Comparison of two CO2 removal options in combined cycle power plants[J]. Energy Conversion and Management 1998, 39(16-18):1653-1663.
[71] MILCAREK R J, AHN J. Rich-burn, flame-assisted fuel cell, quick-mix, lean-Burn (RFQL) combustor and power generation[J]. Journal of Power Sources, 2018, 381:18-25.
[1] 石云姣, 赵宁波, 郑洪涛. 进气畸变对重型燃气轮机燃压缸流动特性影响[J]. 清华大学学报(自然科学版), 2024, 64(1): 90-98.
[2] 张归华, 吴玉新, 吴家豪, 张扬, 张海. 火焰面方法进展及在燃机燃烧室模拟中的挑战[J]. 清华大学学报(自然科学版), 2023, 63(4): 505-520.
[3] 扈学超, 毕笑天, 刘策, 邵卫卫. 氢燃料微预混火焰燃烧不稳定性实验研究[J]. 清华大学学报(自然科学版), 2023, 63(4): 572-584.
[4] 高桥东, 雷福林, 张哲巅. 预测NOx排放的化学反应器网络自动生成方法[J]. 清华大学学报(自然科学版), 2023, 63(4): 612-622.
[5] 孙继昊, 罗绍文, 赵宁波, 杨慧玲, 郑洪涛. 甲烷/空气燃烧NOx排放数值模型对比[J]. 清华大学学报(自然科学版), 2023, 63(4): 623-632.
[6] 刘贵军, 刘佳悦, 张扬, 吴玉新. 湍流热伴流中氢气与乙炔射流自着火实验[J]. 清华大学学报(自然科学版), 2023, 63(4): 594-602.
[7] 田园, 耿俊杰, 孙逸凡, 祁海鹰. 天然气径向分级燃烧室低NOx排放的优化研究[J]. 清华大学学报(自然科学版), 2023, 63(4): 660-669.
[8] 刘江帆, 葛冰, 李珊珊, 芦翔. 基于神经网络的燃烧室壁面冷效预测方法[J]. 清华大学学报(自然科学版), 2023, 63(4): 681-690.
[9] 刘依明, 刘念雄, 许沛琪. 寒冷地区住宅建材生产阶段碳排放预测模型[J]. 清华大学学报(自然科学版), 2023, 63(1): 15-23.
[10] 黄跃群, 刘耀儒, 许文彬, 黎军锋. 水利水电工程全生命周期碳排放研究——以犬木塘工程为例[J]. 清华大学学报(自然科学版), 2022, 62(8): 1366-1373.
[11] 麻林巍, 袁园, 李政. 2050年我国低碳能源系统的形态、特征描绘和敏感性分析[J]. 清华大学学报(自然科学版), 2022, 62(4): 802-809.
[12] 黄晟, 李兴国. 京津冀协同视阈下河北省碳排放和碳交易[J]. 清华大学学报(自然科学版), 2017, 57(6): 655-660.
[13] 张宏钧, 王利宁, 陈文颖. 公路与铁路交通碳排放影响因素[J]. 清华大学学报(自然科学版), 2017, 57(4): 443-448.
[14] 马丁, 陈文颖. 基于中国TIMES模型的碳排放达峰路径[J]. 清华大学学报(自然科学版), 2017, 57(10): 1070-1075.
[15] 刘念雄, 莫丹, 王牧洲, 张敬南. 城市家庭居住碳排放的社会-技术分析方法与应用[J]. 清华大学学报(自然科学版), 2015, 55(9): 933-939.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn