Advances in condensation heat transfer enhancement
WEN Rongfu, DU Bingang, YANG Siyan, LIU Yuanbo, LI Qixun, CHENG Yaqi, LAN Zhong, MA Xuehu
Liaoning Key Laboratory of Clean Utilization of Chemical Resources, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
Abstract:Efficient condensation heat transfer is critical in high-efficiency, highly integrated conventional and emerging energy systems for power generation, chemical processing, electronics cooling, building energy systems, food processing, and water treatment and purification. The formation, transport, and removal of the liquid condensate by interfacial structures significantly enhances the condensation heat transfer. Recent advances in micro/nano-fabrication techniques and advanced materials have led to the rapid development of many functional structured surfaces, exciting improvements in interfacial transport, and better understanding of the underlying mechanisms. This review presents an overview of the basic heat and mass transfer processes from the hot vapor to the cold substrate to illustrate the condensation heat transfer enhancement principles. Some new strategies and important studies for enhancing condensation are then reviewed to illustrate the power of surface modification and system optimization. Finally, this review analyzes the challenges and perspective for advanced heat transfer surfaces in future industrial applications.
温荣福, 杜宾港, 杨思艳, 刘渊博, 李启迅, 程雅琦, 兰忠, 马学虎. 蒸气冷凝传热强化研究进展[J]. 清华大学学报(自然科学版), 2021, 61(12): 1353-1370.
WEN Rongfu, DU Bingang, YANG Siyan, LIU Yuanbo, LI Qixun, CHENG Yaqi, LAN Zhong, MA Xuehu. Advances in condensation heat transfer enhancement. Journal of Tsinghua University(Science and Technology), 2021, 61(12): 1353-1370.
[1] CHO H J, PRESTON D J, ZHU Y Y, et al. Nanoengineered materials for liquid-vapour phase-change heat transfer[J]. Nature Reviews Materials, 2017, 2(2):16092. [2] 马学虎, 兰忠, 王凯, 等. 舞动的液滴:界面现象与过程调控[J]. 化工学报, 2018, 69(1):9-43. MA X H, LAN Z, WANG K, et al. Dancing droplet:Interface phenomena and process regulation[J]. CIESC Journal, 2017, 69(1):9-43. (in Chinese) [3] WEN R F, MA X H, LEE Y C, et al. Liquid-vapor phase-change heat transfer on functionalized nanowired surfaces and beyond[J]. Joule, 2018, 2(11):2307-2347. [4] ATTINGER D, FRANKIEWICZ C, BETZ A R, et al. Surface engineering for phase change heat transfer:A review[J]. MRS Energy & Sustainability, 2014, 1:E4. [5] ROSE J W. Dropwise condensation 2019 max jakob memorial award paper[J]. Journal of Heat Transfer, 2020, 142(4):043101. [6] MA J C, SETT S, CHA H, et al. Recent developments, challenges, and pathways to stable dropwise condensation:A perspective[J]. Applied Physics Letters, 2020, 116(26):260501. [7] ROSE J W. Dropwise condensation theory and experiment:A review[J]. Proceedings of the Institution of Mechanical Engineers, Part A:Journal of Power and Energy, 2002, 216(2):115-128. [8] MA X H, ROSE J W, XU D Q, et al. Advances in dropwise condensation heat transfer:Chinese research[J]. Chemical Engineering Journal, 2000, 78(2-3):87-93. [9] XU W, LAN Z, PENG B L, et al. Heterogeneous nucleation capability of conical microstructures for water droplets[J]. RSC Advances, 2015, 5(2):812-818. [10] WEN R F, LI Q, WU J F, et al. Hydrophobic copper nanowires for enhancing condensation heat transfer[J]. Nano Energy, 2017, 33:177-183. [11] WEN R F, XU S S, ZHAO D L, et al. Sustaining enhanced condensation on hierarchical mesh-covered surfaces[J]. National Science Review, 2018, 5(6):878-887. [12] WEN R F, XU S S, ZHAO D L, et al. Hierarchical superhydrophobic surfaces with micropatterned nanowire arrays for high-efficiency jumping droplet condensation[J]. ACS Applied Materials & Interfaces, 2017, 9(51):44911-44921. [13] MILJKOVIC N, ENRIGHT R, NAM Y, et al. Jumping-droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces[J]. Nano Letters, 2013, 13(1):179-187. [14] CHU K H, XIAO R, WANG E N. Uni-directional liquid spreading on asymmetric nanostructured surfaces[J]. Nature Materials, 2010, 9(5):413-417. [15] LIU M J, WANG S T, JIANG L. Nature-inspired superwettability systems[J]. Nature Reviews Materials, 2017, 2(7):17036. [16] WANG Q B, YAO X, LIU H, et al. Self-removal of condensed water on the legs of water striders[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(30):9247-9252. [17] MILJKOVIC N, WANG E N. Condensation heat transfer on superhydrophobic surfaces[J]. MRS Bulletin, 2013, 38(5):397-406. [18] GONG X J, GAO X F, JIANG L. Recent progress in bionic condensate microdrop self-propelling surfaces[J]. Advanced Materials, 2017, 29(45):1703002. [19] KIM S, KIM K J. Dropwise condensation modeling suitable for superhydrophobic surfaces[J]. Journal of Heat Transfer, 2011, 133(8):081502. [20] ENRIGHT R, MILJKOVIC N, ALVARADO J L, et al. Dropwise condensation on micro-and nanostructured surfaces[J]. Nanoscale and Microscale Thermophysical Engineering, 2014, 18(3):223-250. [21] ZHAO Y J, PRESTON D J, LU Z M, et al. Effects of millimetric geometric features on dropwise condensation under different vapor conditions[J]. International Journal of Heat and Mass Transfer, 2018, 119:931-938. [22] CHENG Y Q, DU B G, WANG K, et al. Macrotextures-induced jumping relay of condensate droplets[J]. Applied Physics Letters, 2019, 114(9):093704. [23] LAN Z, WANG D, CAO K J, et al. Dynamic behaviors of condensing clusters based on rayleigh scattering experiment[J]. Scientific Reports, 2017, 7(1):987. [24] LAN Z, CHEN F Y, QIANG W L, et al. Direct observation of water clusters for surface design[J]. Chemical Engineering Science, 2020, 217:115475. [25] WEN R F, LAN Z, PENG B L, et al. Droplet dynamics and heat transfer for dropwise condensation at lower and ultra-lower pressure[J]. Applied Thermal Engineering, 2015, 88:265-273. [26] WEN R F, LAN Z, PENG B L, et al. Droplet departure characteristics and dropwise condensation heat transfer at low steam pressure[J]. Journal of Heat Transfer, 2016, 138(7):071501. [27] 温荣福, 马学虎, 兰忠, 等. 低压蒸汽滴状冷凝中液滴脱落滞后效应[J]. 科学通报, 2015, 60(28-29):2784-2789. WEN R F, MA X H, LAN Z, et al. Retention effect of droplet departure in dropwise condensation at low steam pressure[J]. Chinese Science Bulletin, 2015, 60(28-29):2784-2789. (in Chinese). [28] 徐威, 彭本利, 温荣福, 等. 刻蚀表面冷凝核化点分布的实验研究[J]. 工程热物理学报, 2013, 34(3):538-541. XU W, PENG B L, WEN R F, et al. Experimental study on the nucleation sites distribution of chemical etched surface[J]. Journal of Engineering Thermophysics, 2013, 34(3):538-541. (in Chinese) [29] PARK K C, KIM P, GRINTHAL A, et al. Condensation on slippery asymmetric bumps[J]. Nature, 2016, 531(7592):78-82. [30] WEN R F, ZHOU X D, PENG B L, et al. Falling-droplet-enhanced filmwise condensation in the presence of non-condensable gas[J]. International Journal of Heat and Mass Transfer, 2019, 140:173-186. [31] MA X H, ZHOU X D, LAN Z, et al. Condensation heat transfer enhancement in the presence of non-condensable gas using the interfacial effect of dropwise condensation[J]. International Journal of Heat and Mass Transfer, 2008, 51(7-8):1728-1737. [32] MA X H, ZHOU X D, LAN Z, et al. Experimental investigation of enhancement of dropwise condensation heat transfer of steam-air mixture:Falling droplet effect[J]. Journal of Enhanced Heat Transfer, 2007, 14(4):295-305. [33] 兰忠, 马学虎, 张宇, 等. 引入液固界面效应的滴状冷凝传热模型[J]. 化工学报, 2005, 56(9):1626-1632. LAN Z, MA X H, ZHANG Y, et al. Dropwise condensation heat transfer model with liquid-solid surface free energy difference effect[J]. Journal of Chemical Industry and Engineering (China), 2005, 56(9):1626-1632. (in Chinese) [34] MA X H, LAN Z, XU W, et al. Effect of surface free energy difference on steam-ethanol mixture condensation heat transfer[J]. International Journal of Heat and Mass Transfer, 2012, 55(4):531-537. [35] ÓNEILL G A, WESTWATER J W. Dropwise condensation of steam on electroplated silver surfaces[J]. International Journal of Heat and Mass Transfer, 1984, 27(9):1539-1549. [36] SUN J, WANG H S. On the early and developed stages of surface condensation:Competition mechanism between interfacial and condensate bulk thermal resistances[J]. Scientific Reports, 2016, 6(1):35003. [37] MASUDA H, ROSE J W. Static configuration of liquid films on horizontal tubes with low radial fins:Implications for condensation heat transfer[J]. Proceedings of the Royal Society A, Mathematical, Physical and Engineering Sciences, 1987, 410(1838):125-141. [38] WEISENSEE P B, WANG Y B, QIAN H L, et al. Condensate droplet size distribution on lubricant-infused surfaces[J]. International Journal of Heat and Mass Transfer, 2017, 109:187-199. [39] SHANG Y H, HOU Y M, YU M, et al. Modeling and optimization of condensation heat transfer at biphilic interface[J]. International Journal of Heat and Mass Transfer, 2018, 122:117-127. [40] MENG K X, FAN W L, WANG H. Dynamic scenario simulation of dropwise condensation on a superhydrophobic surface with droplet jumping[J]. Applied Thermal Engineering, 2019, 148:316-323. [41] 褚福强, 吴晓敏, 张旋, 等. 超疏水表面冷凝液滴行为与生长机制[J]. 工程热物理学报, 2016, 37(7):1527-1531. CHU F Q, WU X M, ZHANG X, et al. Droplet behaviors and growth regimes on superhydrophobic surface[J]. Journal of Engineering Thermophysics, 2016, 37(7):1527-1531. (in Chinese) [42] XING D D, WU F F, WANG R, et al. Microdrop-assisted microdomain hydrophilicization of superhydrophobic surfaces for high-efficiency nucleation and self-removal of condensate microdrops[J]. ACS Applied Materials & Interfaces, 2019, 11(7):7553-7558. [43] 廖强, 王宏, 朱恂, 等. 水平梯度表面能材料表面上的液滴运动[J]. 中国科学E辑:技术科学, 2007, 37(3):402-408. LIAO Q, WANG H, ZHU X, et al. Liquid droplet movement on horizontal surface with gradient surface energy[J]. Science in China Series E:Technological Sciences, 2006, 49(6):733-741. [44] WEN R F, XU S S, YANG R G. Micromesh-covered superhydrophobic surfaces for efficient condensation heat transfer[C]//2017 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm). Orlando, FL, USA:IEEE, 2017:220-226. [45] ALWAZZAN M, EGAB K, PENG B L, et al. Condensation on hybrid-patterned copper tubes (I):Characterization of condensation heat transfer[J]. International Journal of Heat and Mass Transfer, 2017, 112:991-1004. [46] PENG B L, WANG S F, LAN Z, et al. Analysis of droplet jumping phenomenon with lattice Boltzmann simulation of droplet coalescence[J]. Applied Physics Letters, 2013, 102(15):151601. [47] XU W, LAN Z, PENG B L, et al. Effect of nano structures on the nucleus wetting modes during water vapour condensation:From individual groove to nano-array surface[J]. RSC Advances, 2016, 6(10):7923-7932. [48] EGAB K, ALWAZZAN M, PENG B L, et al. Enhancing filmwise and dropwise condensation using a hybrid wettability contrast mechanism:Circular patterns[J]. International Journal of Heat and Mass Transfer, 2020, 154:119640. [49] PENG B L, MA X H, LAN Z, et al. Analysis of condensation heat transfer enhancement with dropwise-filmwise hybrid surface:Droplet sizes effect[J]. International Journal of Heat and Mass Transfer, 2014, 77:785-794. [50] PENG B L, MA X H, LAN Z, et al. Experimental investigation on steam condensation heat transfer enhancement with vertically patterned hydrophobic-hydrophilic hybrid surfaces[J]. International Journal of Heat and Mass Transfer, 2015, 83:27-38. [51] LI A, ZHANG C, ZHANG Y F. Thermal conductivity of graphene-polymer composites:Mechanisms, properties, and applications[J]. Polymers (Basel), 2017, 9(9):437. [52] ZHANG F, FENG Y Y, FENG W. Three-dimensional interconnected networks for thermally conductive polymer composites:Design, preparation, properties, and mechanisms[J]. Materials Science and Engineering:R:Reports, 2020, 142:100580. [53] CHIEN H C, PENG W T, CHIU T H, et al. Heat transfer of semicrystalline nylon nanofibers[J]. ACS Nano, 2020, 14(3):2939-2946. [54] MOUTERDE T, LEHOUCQ G, XAVIER S, et al. Antifogging abilities of model nanotextures[J]. Nature Materials, 2017, 16(6):658-663. [55] CHEN R K, LU M C, SRINIVASAN V, et al. Nanowires for enhanced boiling heat transfer[J]. Nano Letters, 2009, 9(2):548-553. [56] LEE C Y, ZHANG B J, PARK J, et al. Water droplet evaporation on Cu-based hydrophobic surfaces with nano-and micro-structures[J]. International Journal of Heat and Mass Transfer, 2012, 55(7-8):2151-2159. [57] ANDERSON D M, GUPTA M K, VOEVODIN A A, et al. Using amphiphilic nanostructures to enable long-range ensemble coalescence and surface rejuvenation in dropwise condensation[J]. ACS Nano, 2012, 6(4):3262-3268. [58] GUI X C, LIN Z Q, ZENG Z P, et al. Controllable synthesis of spongy carbon nanotube blocks with tunable macro-and microstructures[J]. Nanotechnology, 2013, 24(8):085705. [59] XIN G Q, YAO T K, SUN H T, et al. Highly thermally conductive and mechanically strong graphene fibers[J]. Science, 2015, 349(6252):1083-1087. [60] KHALIL K, SOTO D, FARNHAM T, et al. Grafted nanofilms promote dropwise condensation of low-surface-tension fluids for high-performance heat exchangers[J]. Joule, 2019, 3(5):1377-1388. [61] GNANAPPA A K, ÓMURCHU C, SLATTERY O, et al. Effect of annealing on hydrophobic stability of plasma deposited fluoropolymer coatings[J]. Polymer Degradation and Stability, 2008, 93(12):2119-2126. [62] PRESTON D J, MAFRA D L, MILJKOVIC N, et al. Scalable graphene coatings for enhanced condensation heat transfer[J]. Nano Letters, 2015, 15(5):2902-2909. [63] 杜宾港, 程雅琦, 侯晓静, 等. 超疏水喷砂表面冷凝液滴特征及传热研究[J]. 工程热物理学报, 2020, 41(10):2542-2548. DU B G, CHENG Y Q, HOU X J, et al. Droplet dynamic behaviors and heat transfer on superhydrophobic sandblasted surfaces[J]. Journal of Engineering Thermophysics, 2020, 41(10):2542-2548. (in Chinese) [64] PAXSON A T, YAGVE J L, GLEASON K K, et al. Stable dropwise condensation for enhancing heat transfer via the initiated chemical vapor deposition (iCVD) of grafted polymer films[J]. Advanced Materials, 2014, 26(3):418-423. [65] LEIPERTZ A, FRÖBA A P. Improvement of condensation heat transfer by surface modifications[J]. Heat Transfer Engineering, 2008, 29(4):343-356. [66] AZIMI G, DHIMAN R, KWON H M, et al. Hydrophobicity of rare-earth oxide ceramics[J]. Nature Materials, 2013, 12(4):315-320. [67] PRESTON D J, LU Z M, SONG Y, et al. Heat transfer enhancement during water and hydrocarbon condensation on lubricant infused surfaces[J]. Scientific Reports, 2018, 8(1):540. [68] SINGH V, BOUGHER T L, WEATHERS A, et al. High thermal conductivity of chain-oriented amorphous polythiophene[J]. Nature Nanotechnology, 2014, 9(5):384-390. [69] WILKE K L, ANTAO D S, CRUZ S, et al. Polymer infused porous surfaces for robust, thermally conductive, self-healing coatings for dropwise condensation[J]. ACS Nano, 2020, 14(11):14878-14886. [70] BOREYKO J B, BAKER C H, POLEY C R, et al. Wetting and dewetting transitions on hierarchical superhydrophobic surfaces[J]. Langmuir, 2011, 27(12):7502-7509. [71] BORMASHENKO E. Progress in understanding wetting transitions on rough surfaces[J]. Advances in Colloid and Interface Science, 2015, 222:92-103. [72] YOSHIMITSU Z, NAKAJIMA A, WATANABE T, et al. Effects of surface structure on the hydrophobicity and sliding behavior of water droplets[J]. Langmuir, 2002, 18(15):5818-5822. [73] ROY R, WEIBEL J A, GARIMELLA S V. Re-entrant cavities enhance resilience to the cassie-to-wenzel state transition on superhydrophobic surfaces during electrowetting[J]. Langmuir, 2018, 34(43):12787-12793. [74] LIU Y H, MOEVIUS L, XU X P, et al. Pancake bouncing on superhydrophobic surfaces[J]. Nature Physics, 2014, 10(7):515-519. [75] BARTOLO D, BOUAMRIRENE F, VERNEUIL E, et al. Bouncing or sticky droplets:Impalement transitions on superhydrophobic micropatterned surfaces[J]. Europhysics Letters, 2006, 74(2):299-305. [76] WHYMAN G, BORMASHENKO E. Wetting transitions on rough substrates:General considerations[J]. Journal of Adhesion Science and Technology, 2012, 26(1-3):207-220. [77] BORMASHENKO E Y. Wetting of real surfaces[M]. Berlin:Walter de Gruyter GmbH & Co KG, 2018. [78] WEN R F, LAN Z, PENG B L, et al. Wetting transition of condensed droplets on nanostructured superhydrophobic surfaces:Coordination of surface properties and condensing conditions[J]. ACS Applied Materials & Interfaces, 2017, 9(15):13770-13777. [79] HAN T, KWAK H J, KIM J H, et al. Nanograssed zigzag structures to promote coalescence-induced droplet jumping[J]. Langmuir, 2019, 35(27):9093-9099. [80] PENG Q, JIA L, DING Y, et al. Influence of groove orientation on dropwise condensation on hydrophobic and hierarchical superhydrophobic surfaces with microgroove arrays[J]. International Communications in Heat and Mass Transfer, 2020, 112:104492. [81] BOREYKO J B, CHEN C H. Self-propelled dropwise condensate on superhydrophobic surfaces[J]. Physical Review Letters, 2009, 103(18):184501. [82] CHA H, XU C Y, SOTELO J, et al. Coalescence-induced nanodroplet jumping[J]. Physical Review Fluids, 2016, 1(6):064102. [83] WEN R F, XU S S, MA X H, et al. Three-dimensional superhydrophobic nanowire networks for enhancing condensation heat transfer[J]. Joule, 2018, 2(2):269-279. [84] SEO D, SHIM J, MOON B, et al. Passive anti-flooding superhydrophobic surfaces[J]. ACS Applied Materials & Interfaces, 2020, 12(3):4068-4080. [85] HE M, DING Y, CHEN J, et al. Spontaneous uphill movement and self-removal of condensates on hierarchical tower-like arrays[J]. ACS Nano, 2016, 10(10):9456-9462. [86] SHEN Y Z, XIE Y H, TAO J, et al. Rationally designed nanostructure features on superhydrophobic surfaces for enhancing self-propelling dynamics of condensed droplets[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(2):2702-2708. [87] LI H X, AILI A, ALHOSANI M H, et al. Directional passive transport of microdroplets in oil-infused diverging channels for effective condensate removal[J]. ACS Applied Materials & Interfaces, 2018, 10(24):20910-20919. [88] SHARMA C S, STAMATOPOULOS C, SUTER R, et al. Rationally 3D-textured copper surfaces for laplace pressure imbalance-induced enhancement in dropwise condensation[J]. ACS Applied Materials & Interfaces, 2018, 10(34):29127-29135. [89] SHARMA C S, COMBE J, GIGER M, et al. Growth rates and spontaneous navigation of condensate droplets through randomly structured textures[J]. ACS Nano, 2017, 11(2):1673-1682. [90] AILI A, LI H X, ALHOSANI M H, et al. Unidirectional fast growth and forced jumping of stretched droplets on nanostructured microporous surfaces[J]. ACS Applied Materials & Interfaces, 2016, 8(33):21776-21786. [91] Lü C J, HAO P F, ZHANG X W, et al. Dewetting transitions of dropwise condensation on nanotexture-enhanced superhydrophobic surfaces[J]. ACS Nano, 2015, 9(12):12311-12319. [92] CHENG Y Q, LIU Y B, YE X, et al. Macrotextures-enabled self-propelling of large condensate droplets[J]. Chemical Engineering Journal, 2021, 405:126901. [93] WONG T S, KANG S H, TANG S K Y, et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity[J]. Nature, 2011, 477(7365):443-447. [94] ANAND S, PAXSON A T, DHIMAN R, et al. Enhanced condensation on lubricant-impregnated nanotextured surfaces[J]. ACS Nano, 2012, 6(11):10122-10129. [95] CHEN X S, WEN G, GUO Z G. What are the design principles, from the choice of lubricants and structures to the preparation method, for a stable slippery lubricant-infused porous surface?[J]. Materials Horizons, 2020, 7(7):1697-1726. [96] ÖLÇERO AǦ LU E, HSIEH C Y, LAU K K S, et al. Thin film condensation supported on ambiphilic microstructures[J]. Journal of Heat Transfer, 2017, 139(2):020910. [97] PRESTON D J, WILKE K L, LU Z M, et al. Gravitationally driven wicking for enhanced condensation heat transfer[J]. Langmuir, 2018, 34(15):4658-4664. [98] OH J, ZHANG R Y, SHETTY P P, et al. Thin film condensation on nanostructured surfaces[J]. Advanced Functional Materials, 2018, 28(16):1707000. [99] HOU Y M, YU M, CHEN X M, et al. Recurrent filmwise and dropwise condensation on a beetle mimetic surface[J]. ACS Nano, 2015, 9(1):71-81. [100] BINTEIN P B, LHUISSIER H, MONGRUEL A, et al. Grooves accelerate dew shedding[J]. Physical Review Letters, 2019, 122(9):098005. [101] 唐桂华, 胡浩威, 牛东, 等. 蒸汽珠状冷凝传热的研究进展[J]. 科学通报, 2020, 65(17):1653-1676. TANG G H, HU H W, NIU D, et al. Advances in vapor dropwise condensation heat transfer[J]. Science Bulletin, 2020, 65(17):1653-1676. (in Chinese) [102] MA X H, WANG S F, LAN Z, et al. Wetting mode evolution of steam dropwise condensation on superhydrophobic surface in the presence of noncondensable gas[J]. Journal of Heat Transfer, 2012, 134(2):021501. [103] TORRESIN D, TIWARI M K, DEL COL D, et al. Flow condensation on copper-based nanotextured superhydrophobic surfaces[J]. Langmuir, 2013, 29(2):840-848. [104] RYKACZEWSKI K, PAXSON A T, STAYMATES M, et al. Dropwise condensation of low surface tension fluids on omniphobic surfaces[J]. Scientific Report, 2014, 4(1):4158. [105] LU M C, LIN C C, LO C W, et al. Superhydrophobic Si nanowires for enhanced condensation heat transfer[J]. International Journal of Heat and Mass Transfer, 2017, 111:614-623. [106] VEMURI S, KIM K J. An experimental and theoretical study on the concept of dropwise condensation[J]. International Journal of Heat and Mass Transfer, 2006, 49(3-4):649-657. [107] EVANS A G, MUMM D R, HUTCHINSON J W, et al. Mechanisms controlling the durability of thermal barrier coatings[J]. Progress in Materials Science, 2001, 46(5):505-553. [108] HOLDEN K M, WANNIARACHCHI A S, MARTO P J, et al. The use of organic coatings to promote dropwise condensation of steam[J]. Journal of Heat Transfer, 1987, 109(3):768-774. [109] MA J C, CHA H, KIM M K, et al. Condensation induced delamination of nanoscale hydrophobic films[J]. Advanced Functional Materials, 2019, 29(43):1905222. [110] WEBB R L, KIM N H. Principles of enhanced heat transfer[M]. Boca Raton, Fla, USA:Taylor & Francis, 2005. [111] AHLERS M, BUCK-EMDEN A, BART H J. Is dropwise condensation feasible? A review on surface modifications for continuous dropwise condensation and a profitability analysis[J]. Journal of Advanced Research, 2019, 16:1-13. [112] HOENIG S H, MODAK S, CHEN Z J, et al. Role of substrate thermal conductivity and vapor pressure in dropwise condensation[J]. Applied Thermal Engineering, 2020, 178:115529. [113] MA X H, CHEN J B, XU D Q, et al. Influence of processing conditions of polymer film on dropwise condensation heat transfer[J]. International Journal of Heat and Mass Transfer, 2002, 45(16):3405-3411. [114] 杜长海, 马学虎, 徐敦颀. 超薄PTFE表面上滴状冷凝的传热研究[J]. 化学工业与工程, 2000, 17(4):192-197. DU C H, MA X H, XU D X. A study of heat transfer performances of dropwise condensation on the ultrathin PTFE surfaces[J]. Chemical Industry and Engineering, 2000, 17(4):192-197. (in Chinese) [115] JI D Y, LEE J W, HWANG W, et al. Experimental study of condensation heat transfer on a horizontal aluminum tube with superhydrophobic characteristic[J]. International Journal of Heat and Mass Transfer, 2019, 134:286-295. [116] MA J C, CAHILL D G, MILJKOVIC N. Condensation induced blistering as a measurement technique for the adhesion energy of nanoscale polymer films[J]. Nano Letters, 2020, 20(5):3918-3924. [117] WANG S P, ZHANG L, LI J. The numerical simulation of the shell side flow and heat transfer for 600 MW steam turbine condenser[J]. Advanced Materials Research, 2012, 614-615:265-671. [118] KARLSSON T, VAMLING L. Flow fields in shell-and-tube condensers:Comparison of a pure refrigerant and a binary mixture[J]. International Journal of Refrigeration, 2005, 28(5):706-713. [119] WANG X T, ZHENG N B, LIU Z C, et al. Numerical analysis and optimization study on shell-side performances of a shell and tube heat exchanger with staggered baffles[J]. International Journal of Heat and Mass Transfer, 2018, 124:247-259. [120] YANG J F, ZENG M, WANG Q W. Numerical investigation on combined single shell-pass shell-and-tube heat exchanger with two-layer continuous helical baffles[J]. International Journal of Heat and Mass Transfer, 2015, 84:103-113. [121] CHEN J, ZHAO P B, WANG Q W, et al. Experimental investigation of shell-side performance and optimal design of shell-and-tube heat exchanger with different flower baffles[J]. Heat Transfer Engineering, 2021, 42(7):613-626. [122] YANG S F, CHEN Y P, WU J F, et al. Investigation on shell side performance in half-cylindrical desuperheating zone of ladder type helical baffle heat exchangers[J]. Applied Thermal Engineering, 2020, 175:115334. [123] SUI Z G, YANG J, DENG C C, et al. Numerical simulation of the effects of trefoil tube support plates on the flow and heat transfer characteristics of a steam generator[J]. International Journal of Energy Research, 2020, 44(9):7761-7777. [124] GE Y, XIN F, PAN Y, et al. Optimal arrangement design of a tube bundle in cross-flow using computational fluid dynamics and multi-objective genetic algorithm[J]. Journal of Heat Transfer, 2019, 141(7):071801. [125] GOROBETS V, BOHDAN Y, TROKHANIAK V, et al. Investigations of heat transfer and hydrodynamics in heat exchangers with compact arrangements of tubes[J]. Applied Thermal Engineering, 2019, 151:46-54. [126] MURASE T, WANG H S, ROSE J W. Effect of inundation for condensation of steam on smooth and enhanced condenser tubes[J]. International Journal of Heat and Mass Transfer, 2006, 49(17-18):3180-3189. [127] TANASAWA I. Advances in condensation heat transfer[J]. Advances in Heat Transfer, 1991, 21:55-139. [128] HU H W, TANG G H, NIU D. Experimental investigation of convective condensation heat transfer on tube bundles with different surface wettability at large amount of noncondensable gas[J]. Applied Thermal Engineering, 2016, 100:699-707. [129] MCNEIL D A, BURNSIDE B M, CUTHBERTSON G. Dropwise condensation of steam on a small tube bundle at turbine condenser conditions[J]. Experimental Heat Transfer, 2000, 13(2):89-105. [130] 过增元, 魏澍, 程新广. 换热器强化的场协同原则[J]. 科学通报, 2003, 48(22):2324-2327. GUO Z Y, WEI P, CHENG X G. The synergy principle for intensification of heat exchanger[J]. Chinese Science Bulletin, 2003, 48(22):2324-2327. (in Chinese) [131] 周森泉, 过增元, 胡桅林, 等. 来流温度速度不均匀时换热器效能的分析[J]. 工程热物理学报, 1994, 15(4):403-407. ZHOU S Q, GUO Z Y, HU Z L, et al. Effects of nonuniformity of inlet fluid temperature/velocity on the thermal performance of heat exchangers[J]. Journal of Engineering Thermophysics, 1994, 15(4):403-407. (in Chinese)