111]刃型位错与[010]位错环相互作用的分子动力学研究" /> 111]刃型位错与[010]位错环相互作用的分子动力学研究" /> 111] edge dislocation and the [010] dislocation loop in BCC-Fe" /> BCC-Fe中1/ 2[<span style="text-decoration:overline">1</span><span style="text-decoration:overline">1</span>1]刃型位错与[010]位错环相互作用的分子动力学研究
Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (12): 2029-2034    DOI: 10.16511/j.cnki.qhdxxb.2022.25.003
  材料科学 本期目录 | 过刊浏览 | 高级检索 |
BCC-Fe中1/ 2[111]刃型位错与[010]位错环相互作用的分子动力学研究
林盼栋, 聂君锋, 刘美丹
清华大学 核能与新能源技术研究院,先进反应堆工程与安全教育部重点实验室,北京 100084
Molecular dynamics study of the interactions between the 1/2[111] edge dislocation and the [010] dislocation loop in BCC-Fe
LIN Pandong, NIE Junfeng, LIU Meidan
Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
全文: PDF(4220 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 研究压力容器(reactor pressure vessel,RPV)钢的辐照效应,需要从微观上揭示位错运动以及位错与辐照缺陷相互作用机理,从而为评估RPV钢在辐照作用下的宏观力学行为提供依据。该文采用分子动力学(molecular dynamics,MD)方法研究体心立方晶体(body center cubic,BCC)Fe中1/2[111]刃型位错与[010]位错环的相互作用,并分析了温度和位错环半径对相互作用过程以及临界剪切应力(critical resolved shearing stress, CRSS)的影响。结果表明:刃型位错与位错环相互作用包括混合位错段的形成、位错段的扫掠、螺旋偶极子的形成以及刃型位错挣脱位错环等过程;温度会促进位错环的吸收,并且刃型位错挣脱位错环所需的CRSS与温度有关,温度越高,CRSS越小。位错环半径越大,1/2[111]刃型位错扫掠的[010]位错段的长度越长,则临界剪切应力也就越大。
服务
把本文推荐给朋友 111]刃型位错与[010]位错环相互作用的分子动力学研究”的文章,特向您推荐。请打开下面的网址:http://jst.tsinghuajournals.com/CN/abstract/abstract154190.shtml" name="neirong"> 111]刃型位错与[010]位错环相互作用的分子动力学研究">
加入引用管理器
E-mail Alert
RSS
作者相关文章
林盼栋
聂君锋
刘美丹
关键词 位错环温度位错环半径临界剪切应力(CRSS)分子动力学    
Abstract:The mechanical behavior of irradiated RPV steel is important for nuclear reactor safety. The property changes are due to microscale dislocation motion and interactions between dislocations and irradiation defects that need to be further understood. This study used molecular dynamics studies to model the interactions between 1/2[111] edge dislocations and [010] dislocation loops in BCC-Fe. The models show the effects of temperature and dislocation loop radius on the interactions and the critical resolved shearing stress (CRSS). The results indicate that the interactions include the formation of mixed dislocation segments, sweeping of the dislocation segments, formation of screw dipoles and edge dislocations breaking away from the dislocation loop. Higher temperatures promote the absorption of dislocation loops and reduce the CRSS. The length of a [010] dislocation segment swept by a 1/2[111] edge dislocation increases with increasing dislocation loop radius which increases the CRSS.
Key wordsdislocation loop    temperature    dislocation loop radius    critical resolved shearing stress (CRSS)    molecular dynamics
收稿日期: 2020-12-18      出版日期: 2022-11-10
基金资助:聂君锋,副研究员,E-mail:niejf@tsinghua.edu.cn
引用本文:   
林盼栋, 聂君锋, 刘美丹. BCC-Fe中1/ 2[111]刃型位错与[010]位错环相互作用的分子动力学研究[J]. 清华大学学报(自然科学版), 2022, 62(12): 2029-2034.
LIN Pandong, NIE Junfeng, LIU Meidan. Molecular dynamics study of the interactions between the 1/2[111] edge dislocation and the [010] dislocation loop in BCC-Fe. Journal of Tsinghua University(Science and Technology), 2022, 62(12): 2029-2034.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2022.25.003  或          http://jst.tsinghuajournals.com/CN/Y2022/V62/I12/2029
  
  
  
  
  
  
  
  
[1] MESLIN E, LAMBRECHT M, HERNáNDEZ-MAYORAL M, et al. Characterization of neutron-irradiated ferritic model alloys and a RPV steel from combined APT, SANS, TEM and PAS analyses[J]. Journal of Nuclear Materials, 2010, 406(1): 73-83.
[2] GELLES D S. Microstructural examination of low activation ferritic steels following irradiation in ORR at 330 and 400℃ to~10 dpa[J]. Journal of Nuclear Materials, 2004, 329-333: 304-308.
[3] POROLLO S I, DVORIASHIN A M, VOROBYEV A N, et al. The microstructure and tensile properties of Fe-Cr alloys after neutron irradiation at 400℃ to 5.5-7.1 dpa[J]. Journal of Nuclear Materials, 1998, 256(2-3): 247-253.
[4] JENKINS M L, YAO Z, HERNáNDEZ-MAYORAL M, et al. Dynamic observations of heavy-ion damage in Fe and Fe-Cr alloys[J]. Journal of Nuclear Materials, 2009, 389(2): 197-202.
[5] SCHAEUBLIN R, GELLES D, VICTORIA M. Microstructure of irradiated ferritic/martensitic steels in relation to mechanical properties[J]. Journal of Nuclear Materials, 2002, 307-311: 197-202.
[6] FUKUMOTO K I, SUGIYAMA M, MATSUI H. Features of dislocation channeling in neutron-irradiated V-(Fe, Cr)-Ti alloy[J]. Journal of Nuclear Materials, 2007, 367-370: 829-833.
[7] VICTORIAA M, BALUCA N, BAILAT C, et al. The microstructure and associated tensile properties of irradiated FCC and BCC metals[J]. Journal of Nuclear Materials, 2000, 276(1-3): 114-122.
[8] TERENTYEV D, MALERBA L, BACON D J, et al. The effect of temperature and strain rate on the interaction between an edge dislocation and an interstitial dislocation loop in α-iron[J]. Journal of Physics: Condensed Matter, 2007, 19(45): 456211.
[9] JIA L X, HE X F, DOU Y K, et al. The effects of interaction geometry on pinning strength induced by interstitial dislocation loop in BCC-Fe[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2019, 456: 103-107.
[10] LIU X Y, BINER S B. Molecular dynamics simulations of the interactions between screw dislocations and self-interstitial clusters in body-centered cubic Fe[J]. Scripta Materialia, 2008, 59(1): 51-54.
[11] PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics, 1995, 117(1): 1-19.
[12] OSETSKY Y N, BACON D J. An atomic-level model for studying the dynamics of edge dislocations in metals[J]. Modelling and Simulation in Materials Science and Engineering, 2003, 11(4): 427-446.
[13] ACKLAND G J, MENDELEV M I, SROLOVITZ D J, et al. Development of an interatomic potential for phosphorus impurities in α-iron[J]. Journal of Physics: Condensed Matter, 2004, 16(27): S2629-S2642.
[14] STUKOWSKI A. Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool[J]. Modelling and Simulation in Materials Science and Engineering, 2009, 18(1): 015012.
[15] TERENTYEV D, BAKAEV A, ZHURKIN E E. Effect of carbon decoration on the absorption of 〈100〉 dislocation loops by dislocations in iron[J]. Journal of Physics: Condensed Matter, 2014, 26(16): 165402.
[16] TERENTYEV D, BAKAEV A. Radiation-induced strengthening and absorption of dislocation loops in ferritic Fe-Cr alloys: The role of Cr segregation[J]. Journal of Physics: Condensed Matter, 2013, 25(26): 265702.
[1] 安瑞楠, 林鹏, 陈道想, 安邦, 高阳阳. 锚碇大体积混凝土智能通水温控方法与系统[J]. 清华大学学报(自然科学版), 2024, 64(4): 601-611.
[2] 贺胜, 疏学明, 胡俊, 张雷, 张伽, 张嘉乐, 周扬. 基于消防大数据的电气火灾风险预测预警方法[J]. 清华大学学报(自然科学版), 2024, 64(3): 478-491.
[3] 严泽凡, 刘荣正, 刘兵, 邵友林, 刘马林. SiC纳米包覆颗粒烧结行为的分子动力学模拟[J]. 清华大学学报(自然科学版), 2023, 63(8): 1297-1308.
[4] 安瑞楠, 林鹏, 陈道想, 安邦, 卢冠楠, 林之涛. 超大混凝土结构温度梯度监测与温度场演化[J]. 清华大学学报(自然科学版), 2023, 63(7): 1050-1059.
[5] 刘宇, 赵淼, 张章, 贾贺, 黄伟. 锥形减速结构流场热化学非平衡仿真[J]. 清华大学学报(自然科学版), 2023, 63(3): 386-393,413.
[6] 侯雨晨, 曹彬, 朱颖心, 崔秀青, 王婧, 贾欣雨, 张楠. 冬季室内热环境与糖尿病关联性初探[J]. 清华大学学报(自然科学版), 2023, 63(12): 1994-2004.
[7] 刘依明, 许沛琪, 刘念雄. 高寒地区典型办公建筑南向组合式外窗热工设计优化[J]. 清华大学学报(自然科学版), 2023, 63(11): 1878-1886.
[8] 段君瑞, 何明铭, 胡皓玮, 纪杰. 正向风作用下的对开口腔室火灾行为[J]. 清华大学学报(自然科学版), 2023, 63(10): 1502-1511.
[9] 刘智远, 李行, 周汛. 送风环境下地铁车厢火灾温度分布[J]. 清华大学学报(自然科学版), 2023, 63(10): 1529-1536.
[10] 刘子平, 孙俊. 含分布式内热源复合平板等效导热系数模型[J]. 清华大学学报(自然科学版), 2023, 63(1): 104-113.
[11] 余舜尧, 徐小蓉, 邱流潮, 金峰. 堆石混凝土浇筑前后的非均质温度分布试验研究[J]. 清华大学学报(自然科学版), 2022, 62(9): 1388-1400.
[12] 陈飞宇, 付明, 申世飞, 李亚运, 郭贤. -10℃~5℃低温环境下体育锻炼人员人体热反应关键参数的实验研究[J]. 清华大学学报(自然科学版), 2022, 62(6): 1059-1066.
[13] 胡田飞, 王力. 寒区路基地源热泵系统冻胀防控效果[J]. 清华大学学报(自然科学版), 2022, 62(5): 871-880.
[14] 崔宏志, 黎海星, 包小华, 亓学栋, 史嘉鑫, 肖雄. 非饱和黏土地层中相变能源桩热性能测试[J]. 清华大学学报(自然科学版), 2022, 62(5): 881-890.
[15] 纪文杰, 杜衡, 朱颖心, 曹彬, 连之伟, 刘淑丽, 杨昌智. 对热环境评价指标“标准有效温度SET”的重新解读[J]. 清华大学学报(自然科学版), 2022, 62(2): 331-338.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn