Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (3): 400-407    DOI: 10.16511/j.cnki.qhdxxb.2022.25.007
  机械工程 本期目录 | 过刊浏览 | 高级检索 |
平面电机散热器热流建模与尺寸拓扑并行优化设计
赵家琦, 张鸣, 朱煜, 成荣, 李鑫, 王磊杰, 胡楚雄
清华大学 机械工程系, 摩擦学国家重点实验室, 精密超精密制造装备及控制北京市重点实验室, 北京 100084
Thermofluid modeling for concurrent size-topology optimization of heat sinks for planar motors
ZHAO Jiaqi, ZHANG Ming, ZHU Yu, CHENG Rong, LI Xin, WANG Leijie, HU Chuxiong
Beijing Key Laboratory of Precision/Ultra-precision Manufacturing Equipments and Control, State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(3884 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 为了提高平面电机水冷散热器热流性能,该文构建了散热器热流模型并开展了"结构尺寸-流道拓扑"并行优化设计。首先,构建了散热器3层热流模型,该模型囊括了盖板与流固混合层的流动/传热耦合效应以及散热器厚度方案对热流场的影响。其次,基于3层热流模型,引入孔隙度域来描述流道拓扑,构建了包含流道拓扑变量与层厚变量的连续伴随结构优化模型,并提出了相应的散热器层厚与流道拓扑并行优化方案。最终,数值案例部分评估了3层热流模型准确性及计算效率、"层厚-流道拓扑"并行优化设计结果热流性能和"尺寸-拓扑"并行优化方案。结果表明:相较于全3D热流模型,所构建的3层热流模型仅需少于10%的计算时间获得了近乎一致的温度场;相较于基准设计,所优化的散热器结构新颖且展现出高达30.82%的目标性能改善;相较于离散优化方案,所提出的并行优化方案高效且取得了具有竞争力的设计。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵家琦
张鸣
朱煜
成荣
李鑫
王磊杰
胡楚雄
关键词 散热器热流建模多层模型拓扑优化尺寸优化并行优化    
Abstract:The thermal-hydraulics of water-cooled heat sinks for planar motors were analyzed using a thermofluid model of a heat sink to concurrently optimize the heat sink size and topology. The three-layer thermofluid model of the heat sink included the coupled flow and heat transfer effects between the cover plates and the fluid-solid mixing channel including the influence of the flow channel thickness on the thermal-hydraulics. The model used a porosity model to describe the channel topology and a continuous-adjoint structural optimization model for the geometric variables related to the channel topology and thickness in a concurrent size-topology optimization scheme. Various numerical examples show the accuracy and efficiency of the three-layer thermofluid model and the size-topology optimization scheme. The three-layer model uses 10% less calculational time than full 3D models while still accurately predicting the temperature distribution. The optimized heat sinks have unique topologies with up to 30.82% better heat transfer than baseline designs. This concurrent approach is efficient and obtains designs that are competitive with discrete optimization approach results.
Key wordsheat sink    thermofluid modeling    multi-layer model    topology optimization    size optimization    concurrent optimization
收稿日期: 2021-04-28      出版日期: 2022-03-10
基金资助:张鸣,副研究员,E-mail:Zhangm@tsinghua.edu.cn
引用本文:   
赵家琦, 张鸣, 朱煜, 成荣, 李鑫, 王磊杰, 胡楚雄. 平面电机散热器热流建模与尺寸拓扑并行优化设计[J]. 清华大学学报(自然科学版), 2022, 62(3): 400-407.
ZHAO Jiaqi, ZHANG Ming, ZHU Yu, CHENG Rong, LI Xin, WANG Leijie, HU Chuxiong. Thermofluid modeling for concurrent size-topology optimization of heat sinks for planar motors. Journal of Tsinghua University(Science and Technology), 2022, 62(3): 400-407.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2022.25.007  或          http://jst.tsinghuajournals.com/CN/Y2022/V62/I3/400
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] MOORE A L, SHI L. Emerging challenges and materials for thermal management of electronics[J]. Materials Today, 2014, 17(4):163-174.
[2] 袁丁. 多自由度无铁芯永磁式平面电机的建模与设计方法研究[D]. 北京:清华大学, 2019.YUAN D. Modeling and design method for multi-DOF ironless permanent magnet planar motor[D]. Beijing:Tsinghua University, 2019. (in Chinese)
[3] 曹家勇, 朱煜, 汪劲松, 等. 平面电动机设计、控制与应用技术综述[J]. 电工技术学报, 2005, 20(4):1-8.CAO J Y, ZHU Y, WANG J S, et al. Survey of the state of the art in planar motor technology[J]. Transactions of China Electrotechnical Society, 2005, 20(4):1-8. (in Chinese)
[4] ZHANG M, XU Q M, CHENG R, et al. Radiator optimization design for planar motors based on parametric components[J]. Journal of Beijing Institute of Technology, 2020, 29(2):222-231.
[5] AHMED H E, SALMAN B H, KHERBEET A S, et al. Optimization of thermal design of heat sinks:A review[J]. International Journal of Heat and Mass Transfer, 2018, 118:129-153.
[6] WANG L K, MANGLIK R M, SUNDÉN B. Plate heat exchangers:Design, applications and performance[M]. Boston:WIT Press, 2007.
[7] DEDE E M. Multiphysics topology optimization of heat transfer and fluid flow systems[C]//Proceedings of the COMSOL Conference. Boston, USA:COMSOL, 2009.
[8] ALEXANDERSEN J, ANDREASEN C S. A review of topology optimisation for fluid-based problems[J]. Fluids, 2020, 5(1):29.
[9] DBOUK T. A review about the engineering design of optimal heat transfer systems using topology optimization[J]. Applied Thermal Engineering, 2017, 112:841-854.
[10] HAERTEL J H K, ENGELBRECHT K, LAZAROV B S, et al. Topology optimization of a pseudo 3D thermofluid heat sink model[J]. International Journal of Heat and Mass Transfer, 2018, 121:1073-1088.
[11] ZENG T, WANG H, YANG M Z, et al. Topology optimization of heat sinks for instantaneous chip cooling using a transient pseudo-3D thermofluid model[J]. International Journal of Heat and Mass Transfer, 2020, 154:119681.
[12] YAN S N, WANG F W, HONG J, et al. Topology optimization of microchannel heat sinks using a two-layer model[J]. International Journal of Heat and Mass Transfer, 2019, 143:118462.
[13] ZENG S, KANARGI B, LEE P S. Experimental and numerical investigation of a mini channel forced air heat sink designed by topology optimization[J]. International Journal of Heat and Mass Transfer, 2018, 121:663-679.
[14] ZHAO J Q, ZHANG M, ZHU Y, et al. Topology optimization of planar cooling channels using a three-layer thermofluid model in fully developed laminar flow problems[J]. Structural and Multidisciplinary Optimization, 2021, 63(6):2789-2809.
[15] ZHAO J Q, ZHANG M, ZHU Y, et al. Concurrent optimization of the internal flow channel, inlets, and outlets in forced convection heat sinks[J]. Structural and Multidisciplinary Optimization, 2021, 63(1):121-136.
[16] ZHAO J Q, ZHANG M, ZHU Y, et al. Concurrent optimization of additive manufacturing fabricated lattice structures for natural frequencies[J]. International Journal of Mechanical Sciences, 2019, 163:105153.
[17] WELTY J R, WICKS C E, WILSON R E, et al. Fundamentals of momentum, heat, and mass transfer[M]. 5th ed. Hoboken:John Wiley & Sons, 2008.
[18] LAZAROV B S, SIGMUND O. Filters in topology optimization based on Helmholtz-type differential equations[J]. International Journal for Numerical Methods in Engineering, 2011, 86(6):765-781.
[19] WANG F W, LAZAROV B S, SIGMUND O. On projection methods, convergence and robust formulations in topology optimization[J]. Structural and Multidisciplinary Optimization, 2011, 43(6):767-784.
[20] SVANBERG K. The method of moving asymptotes-a new method for structural optimization[J]. International Journal for Numerical Methods in Engineering, 1987, 24(2):359-373.
[1] 张青松, 贾山, 陈金宝, 徐颖珊, 佘智勇, 蔡成志, 潘一华. 组合体无人机单体机翼构型设计与拓扑优化[J]. 清华大学学报(自然科学版), 2023, 63(3): 423-432.
[2] 彭发忠,王传英,柴恒辉,邵珠峰,王帅奇,王博文. 基于分层结构的伺服压力机滑块轻量化设计[J]. 清华大学学报(自然科学版), 2020, 60(12): 1016-1022.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn