Abstract:Accurate kinematics are fundamental to precise robot manipulations. This paper presents a motion compensation algorithm to correct for robot end-effector deformation caused by heavy loads. The data-driven method for 6D pose estimation of robot end-effector motion estimates the kinematic error based on a Gaussian process regression to predict the position of the offline target points. Then, a pose correction method based on the adjustment model is used to modify the measured and predicted values of the target points to improve the estimation accuracy of the 6D pose. Tests show that the structural deformation caused by heavy loads is well compensated for by this pose estimation method.
[1] MOORING B W, ROTH Z S, DRIELS M R. Fundamentals of manipulator calibration[M]. New York:Wiley, 1991. [2] CHEN X Y, ZHANG Q J, SUN Y L. Non-kinematic calibration of industrial robots using a rigid-flexible coupling error model and a full pose measurement method[J]. Robotics and Computer-Integrated Manufacturing, 2019, 57:46-58. [3] LI R, ZHAO Y. Dynamic error compensation for industrial robot based on thermal effect model[J]. Measurement, 2016, 88:113-120. [4] 王坤. 工业机器人运动学参数标定及误差补偿研究[D]. 武汉:华中科技大学, 2018. WANG K. Research on calibration and error compensation of kinematics parameters of industrial robots[D]. Wuhan:Huazhong University of Science and Technology, 2018. (in Chinese) [5] CHEAH C C, HIRANO M, KAWAMURA S, et al. Approximate Jacobian control for robots with uncertain kinematics and dynamics[J]. IEEE Transactions on Robotics and Automation, 2003, 19(4):692-702. [6] CHENG L, HOU Z G, TAN M. Adaptive neural network tracking control for manipulators with uncertain kinematics, dynamics and actuator model[J]. Automatica, 2009, 45(10):2312-2318. [7] JING W, TAO P Y, YANG G L, et al. Calibration of industry robots with consideration of loading effects using Product-of-Exponential (POE) and Gaussian Process (GP)[C]//Proceedings of 2016 IEEE International Conference on Robotics and Automation (ICRA). Stockholm, Sweden:IEEE, 2016. [8] WAN A, XU J, CHEN H P, et al. Optimal path planning and control of assembly robots for hard-measuring easy-deformation assemblies[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(4):1600-1609. [9] PALMIERI G, PALPACELLI M C, CARBONARI L, et al. Vision-based kinematic calibration of a small-scale spherical parallel kinematic machine[J]. Robotics and Computer-Integrated Manufacturing, 2018, 49:162-169. [10] SHIRINZADEH B, TEOH P L, TIAN Y, et al. Laser interferometry-based guidance methodology for high precision positioning of mechanisms and robots[J]. Robotics and Computer-Integrated Manufacturing, 2010, 26(1):74-82. [11] NUBIOLA A, BONEV I A. Absolute calibration of an ABB IRB 1600 robot using a laser tracker[J]. Robotics and Computer-Integrated Manufacturing, 2013, 29(1):236-245. [12] 金涨军. 飞机装配中大尺寸测量场的建立与优化技术[D]. 杭州:浙江大学, 2016. JIN Z J. Establishment and optimization of large-volume measuring field in aircraft assembly[D]. Hangzhou:Zhejiang University, 2016. (in Chinese) [13] WAN A, WANG Y X, XUE G J, et al. Accurate kinematics calibration method for a large-scale machine tool[J]. IEEE Transactions on Industrial Electronics, 2021, 68(10):9832-9843. [14] WANG W, LIU Y, CHEN R, et al. A calibration method with anistropic weighting for LiDAR and stereo camera system[C]//2019 IEEE International Conference on Robotics and Biomimetics (ROBIO). Dali, China:IEEE, 2019:422-426. [15] 何志昆, 刘光斌, 赵曦晶, 等. 高斯过程回归方法综述[J]. 控制与决策, 2013, 28(8):1121-1129, 1137. HE Z K, LIU G B, ZHAO X J, et al. Overview of Gaussian process regression[J]. Control and Decision, 2013, 28(8):1121-1129, 1137. (in Chinese) [16] RASMUSSEN C E, WILLIAMS C K I. Gaussian processes for machine learning[M]. Cambridge:MIT Press, 2006. [17] 陶本藻, 邱卫宁, 姚宜斌. 误差理论与测量平差基础[M]. 王建国, 译. 武汉:武汉大学出版社, 2019. TAO B Z, QIU W N, YAO Y B. Error theory and foundation of surveying adjustment[M]. WANG J G, Trans. Wuhan:Wuhan University Press, 2019. (in Chinese) [18] YANG Z L, MOURSHED M, LIU K L, et al. A novel competitive swarm optimized RBF neural network model for short-term solar power generation forecasting[J]. Neurocomputing, 2020, 397:415-421.