Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (4): 678-692    DOI: 10.16511/j.cnki.qhdxxb.2022.25.009
  综述 本期目录 | 过刊浏览 | 高级检索 |
支撑“双碳”目标的未来流体机械技术
罗先武1,2, 叶维祥1, 宋雪漪1, 耿晨1
1. 清华大学 能源与动力工程系, 二氧化碳减排与资源化利用技术北京市重点实验室, 北京 100084;
2. 清华大学 水沙科学与水利水电工程国家重点实验室, 北京 100084
Future fluid machinery supporting “double-carbon” targets
LUO Xianwu1,2, YE Weixiang1, SONG Xueyi1, GENG Chen1
1. Beijing Key Laboratory of CO2 Resource Utilization and Emission Reduction Technology, Department of Power and Energy Engineering, Tsinghua University, Beijing 100084, China;
2. State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(9664 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 流体机械是量大面广的设备,每年作为发电设备为我国生产的绿色洁净能源超过社会用电总量的16%,同时作为动力设备消耗近三成社会用电总量,因而需要发展先进、高效的流体机械技术,通过增强水电与抽水蓄能机组的宽域稳定运行能力来促进风电、光伏等间歇性可再生能源快速增长,通过设计优化与智能调控来提升流体机械系统的节能水平,有效支撑我国顺利实现“双碳”战略目标。该文针对我国社会发展中与流体机械相关的重大需求,从生态友好的高效水力发电技术,安全与稳定的抽水蓄能技术,绿色环保的泵、风机与风力机技术,以及流体机械设计优化与智慧化运行技术等方面论述了流体机械及工程学科的技术发展方向及面临的挑战,总结了流体机械目前的热点研究及其进展,为未来流体机械关键技术研发提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
罗先武
叶维祥
宋雪漪
耿晨
关键词 流体机械设计优化稳定运行智能调控    
Abstract:Fluid machinery is widely used in many fields with clean hydro power turbines producing more than 16% of the total residential electricity consumption and rotating machinery consuming around 30% of the total electrical energy consumption every year. Therefore, the development of advanced, efficient rotating fluid machinery can promote the rapid increase of renewable energy sources such as wind power and photovoltaic power by improving the stability of hydro turbines and pumped storage units over wider operating ranges and increasing the efficiencies of fluid machinery through design optimization and smart controls to support reaching the "double-carbon" targets in China. This paper introduces the challenges and development trends in fluid machinery to develop environmentally friendly, efficient hydropower equipment and safe, stable pumped storage systems through design optimization and smart system controls. This paper also summarizes the recent advances in fluid machinery design to provide guideline for future key fluid machinery development.
Key wordsfluid machinery    design optimization    stable operation    smart control
收稿日期: 2021-09-09      出版日期: 2022-04-14
引用本文:   
罗先武, 叶维祥, 宋雪漪, 耿晨. 支撑“双碳”目标的未来流体机械技术[J]. 清华大学学报(自然科学版), 2022, 62(4): 678-692.
LUO Xianwu, YE Weixiang, SONG Xueyi, GENG Chen. Future fluid machinery supporting “double-carbon” targets. Journal of Tsinghua University(Science and Technology), 2022, 62(4): 678-692.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2022.25.009  或          http://jst.tsinghuajournals.com/CN/Y2022/V62/I4/678
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] 罗先武, 季斌, 许洪元. 流体机械设计及优化[M]. 北京:清华大学出版社, 2010.LUO X W, JI B, XU H Y. Design and optimization for fluid machinery[M]. Beijing:Tsinghua University Press, 2010. (in Chinese)
[2] 罗先武, 叶维祥, 杨丹丹, 等. 抽水蓄能机组不稳定现象的流动机理与控制方法[J]. 水电与抽水蓄能, 2020, 6(4):19-31. LUO X W, YE W X, YANG D D, et al. Study on flow mechanism and control of unstable phenomenon for pumped storage unit[J]. Hydropower and Pumped Storage, 2020, 6(4):19-31. (in Chinese)
[3] International Hydropower Association. Hydropower status report 2021 [R/OL]. (2021-06-11)[2021-08-08]. http://hydropower.org/ar2020.
[4] 李玉龙, 何永勇, 雒建斌. 航空柱塞泵关键摩擦副表面改性与性能增强[J]. 清华大学学报(自然科学版), 2021, 61(12):1405-1422.LI Y L, HE Y Y, LUO J B. Surface modifications and performance enhancements of key friction pairs in aviation hydraulic piston pumps[J]. Journal of Tsinghua University (Science and Technology), 2021, 61(12):1405-1422. (in Chinese)
[5] HUANG R F, JI B, LUO X W, et al. Numerical investigation of cavitation-vortex interaction in a mixed-flow waterjet pump[J]. Journal of Mechanical Science and Technology, 2015, 29(9):3707-3716.
[6] 李子君, 王树博, 李微微, 等. 波形流道增强质子交换膜燃料电池性能[J]. 清华大学学报(自然科学版), 2021, 61(10):1046-1054.LI Z J, WANG S B, LI W W, et al. Wavy channels to enhance the performance of proton exchange membrane fuel cells[J]. Journal of Tsinghua University (Science and Technology), 2021, 61(10):1046-1054. (in Chinese)
[7] LUO X W, JI B, ZHUANG B T, et al. A miniature pump with a fluid dynamic bearing[J]. Science China Technological Science, 2012, 55(3):795-801.
[8] 罗兴锜, 朱国俊, 冯建军. 水轮机技术进展与发展趋势[J]. 水力发电学报, 2020, 39(8):1-18. LUO X Q, ZHU G J, FENG J J. Progress and development trends in hydraulic turbine technology[J]. Journal of Hydroelectric Engineering, 2020, 39(8):1-18. (in Chinese)
[9] YANG D D, YU A, JI B, et al. Numerical analyses of ventilated cavitation over a 2-D NACA0015 hydrofoil using two turbulence modeling methods[J]. Journal of Hydrodynamics, 2018, 30(2):345-356.
[10] LUO X W, HUANG R F, JI B. Transient cavitating vortical flows around a hydrofoil using k-ω partially averaged Navier-Stokes model[J]. Modern Physics Letters B, 2016, 30(1):1550262.
[11] HUANG R F, LUO X W, JI B, et al. Turbulent flows over a backward facing step simulated using a modified partially-averaged Navier-Stokes model[J]. Journal of Fluids Engineering, 2017, 139(4):044501.
[12] YE W X, ZHU Z C, QIAN Z D, et al. Numerical analysis of unstable turbulent flows in a centrifugal pump impeller considering the curvature and rotation effect[J]. Journal of Mechanical Science and Technology, 2020, 34(7):2869-2881.
[13] 李广府, 卢池. 高水头混流式水轮机尾水管涡带特性的试验研究[J]. 水电与抽水蓄能, 2019, 5(5):52-57. LI G F, LU C. Experimental study on draft tube vortex of Francis turbine[J]. Hydropower and Pumped Storage, 2019, 5(5):52-57. (in Chinese)
[14] LUO X W, JI B, TSUJIMOTO Y. A review of cavitation in hydraulic machinery[J]. Journal of Hydrodynamics, Ser. B, 2016, 28(3):335-358.
[15] GENG C, LI Y, TSUJIMOTO Y, et al. Pressure oscillations with ultra-low frequency induced by vortical flow inside Francis turbine draft tubes[J]. Sustainable Energy Technologies and Assessments, 2022, 51(6):101908.
[16] HUANG Y F, LIU G N, FAN S Y. Research on prototype hydro-turbine operation[M]. Beijing:Foreign Language Press, 2012.
[17] QIAN Z D, LI W, HUAI W X, et al. The effect of runner cone design on pressure oscillation characteristics in a Francis hydraulic turbine[J]. Proceedings of the Institution of Mechanical Engineers, Part A:Journal of Power and Energy, 2012, 226(1):137-150.
[18] 张春泽, 刁伟, 尤建锋, 等. 长短叶片水轮机尾水涡带动态特性数值分析[J]. 华中科技大学学报(自然科学版), 2017, 45(7):66-73. ZHANG C Z, DIAO W, YOU J F, et al. Numerical analysis of dynamic characteristics of the vortex rope in a Francis turbine with splitter blades[J]. Journal of Huazhong University of Science and Technology (Nature Science Edition), 2017, 45(7):66-73. (in Chinese)
[19] YU A, LUO X W, JI B. Studies of the effect of vortex-control grooves on pressure oscillations in a Francis turbine draft tube[C]//Proceedings of ASME/JSME/KSME 2015 Joint Fluids Engineering Conference. Seoul, South Korea:ASME, 2015.
[20] CHEN Z M, CHOI Y D. Suppression of cavitation in the draft tube of Francis turbine model by J-Groove[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2019, 233(9):3100-3110.
[21] NISHI M, LIU S H. An outlook on the draft-tube-surge study[J]. International Journal of Fluid Machinery and Systems, 2013, 6(1):33-48.
[22] NISHI M, KAWAI K, YOSHIDA K, et al. Installation of a fin as a means to alleviate the draft tube surging[C]//Proceedings of 3rd ASME/JSME Joint Fluids Engineering Conference. San Francisco, USA:ASME, 1999:99-7209.
[23] 张锐志, 西道弘, 罗先武. 尾水管壁面加鳍对混流式水轮机压力脉动的影响[J]. 空气动力学学报, 2020, 38(4):788-795. ZHANG R Z, NISHI M, LUO X W. Effects of fin installation on pressure fluctuation in a Francis turbine draft tube[J]. Acta Aerodynamica Sinica, 2020, 38(4):788-795. (in Chinese)
[24] 廖伟丽, 姬晋廷, 逯鹏, 等. 水轮机主轴中心孔补气对尾水管内部流态的影响[J]. 水利学报, 2008, 39(8):1005-1011. LIAO W L, JI J T, LU P, et al. Effect of air admission through center hole of turbine shaft on the flow in draft tube[J]. Journal of Hydraulic Engineering, 2008, 39(8):1005-1011. (in Chinese)
[25] SUSAN-RESIGA R, VU T C, MUNTEAN S, et al. Jet control of the draft tube vortex rope in Francis turbines at partial discharge[C]//Proceedings of the 23rd IAHR Symposium on Hydraulic Machinery and Systems. Yokohama, Japan:IAHR, 2006:192-205.
[26] ZHANG R K, MAO F, WU J Z, et al. Characteristics and control of the draft-tube flow in part-load Francis turbine[J]. Journal of Fluids Engineering, 2009, 131(2):021101.
[27] 唐敏, 张红伟, 吴励鸣. 向家坝800 MW水轮机主轴中心孔补气系统设计简介[J]. 水电站机电技术, 2011, 34(6):6-8. TANG M, ZHANG H W, WU L M. Introduction of shaft center ventilation system for 800 MW Xiangjiaba hydro turbine[J]. Mechanical & Electrical Technique of Hydropower Station, 2011, 34(6):6-8. (in Chinese)
[28] ZHU L, ZHANG R Z, YU A, et al. Suppression of vortex rope oscillation and pressure vibrations in Francis turbine draft tube using various strategies[J]. Journal of Hydrodynamics, 2021, 33(3):534-545.
[29] 罗先武, 季斌, 张超, 等. 一种基于"健康和谐"理念的水能资源开发与运行管理评价指标体系[J]. 水力发电学报, 2013, 32(2):282-290. LUO X W, JI B, ZHANG C, et al. Evaluation indicator system for development and operation management of hydropower resources based on health and harmony concept[J]. Journal of Hydroelectric Engineering, 2013, 32(2):282-290. (in Chinese)
[30] 中央电视台. 为了鱼, 水电站算了!?[R/OL]. (2021-06-11)[2021-08-08]. http://news.cntv.cn/2015/04/10/VIDE1428676877717932.shtml.
[31] 李海锋, 邵奇, 吴玉林, 等. 负压状态下压力变化导致鲫鱼身体组织的损伤[J]. 动物学报, 2003, 49(1):67-72. LI H F, SHAO Q, WU Y L, et al. Crucian (Carassius auratus auratus) damage caused by pressure changes under subatmospheric conditions[J]. Acta Zoologica Sinica, 2003, 49(1):67-72. (in Chinese)
[32] LONG X P, XU M S, WANG J, et al. An experimental study of cavitation damage on tissue of Carassius auratus in a jet fish pump[J]. Ocean Engineering, 2019, 174:43-50.
[33] DENG Z Q, CARLSON T J, DAUBLE D D, et al. Fish passage assessment of an advanced hydropower turbine and conventional turbine using blade-strike modeling[J]. Energies, 2011, 4(1):57-67.
[34] VAN ESCH B P M. Fish injury and mortality during passage through pumping stations[J]. Journal of Fluids Engineering, 2012, 134(7):071302.
[35] FRANKE G F, WEBB D R, FISHER JR R K, et al. Development of environmentally advanced hydropower turbine system design concepts[R]. Office of Scientific and Technical Information Technical Reports, Washington:Lockheed Martin, 1997.
[36] PAN Q, SHI W D, ZHANG D S, et al. Fish-friendly design of an axial flow pump impeller based on a blade strike model[J]. Proceedings of the Institution of Mechanical Engineers, Part A:Journal of Power and Energy, 2020, 234(2):173-186.
[37] CARLSON T J, DUNCAN J P, GILBRIDE T L. The sensor fish:Measuring fish passage in severe hydraulic conditions[J]. Hydro Review, 2003, 22(3):62-69.
[38] FU T, DENG Z Q, DUNCAN J P, et al. Assessing hydraulic conditions through Francis turbines using an autonomous sensor device[J]. Renewable Energy, 2016, 99:1244-1252.
[39] ZANGIABADI E, MASTERS I, WILLIAMS A J, et al. Computational prediction of pressure change in the vicinity of tidal stream turbines and the consequences for fish survival rate[J]. Renewable Energy, 2017, 101:1141-1156.
[40] 朱国俊, 吉龙娟, 冯建军, 等. 鱼类通过混流式水轮机转轮时受压强及剪切损伤的概率分析[J]. 农业工程学报, 2019, 35(2):55-62. ZHU G J, JI L J, FENG J J, et al. Probability evaluation of pressure and shear damage for fish passing through Francis turbine runner[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(2):55-62. (in Chinese)
[41] ROMERO-GOMEZ P, RICHMOND M C. Simulating blade-strike on fish passing through marine hydrokinetic turbines[J]. Renewable Energy, 2014, 71:401-413.
[42] 孙中康, 潘强, 张德胜, 等. 基于CFD-DEM耦合的轴流泵鱼类损伤机理数值研究[J]. 水动力学研究与进展, 2020, 35(5):631-639. SUN Z K, PAN Q, ZHANG D S, et al. Study on fish damage mechanism in axial-flow pump based on the CFD-DEM coupling method[J]. Journal of Hydrodynamics, 2020, 35(5):631-639. (in Chinese)
[43] 杨丹丹. 轴流泵内鱼体运动行为及损伤分析[D]. 北京:清华大学, 2021. YANG D D. Analysis of fish movement and fish injury in the axial flow pump[D]. Beijing:Tsinghua University, 2021. (in Chinese)
[44] 杨丹丹, 赵明翔, 叶维祥, 等. 基于沉浸边界法的轴流泵内鱼体运动数值模拟[J]. 水力发电学报, 2021, 40(7):95-104. YANG D D, ZHAO M X, YE W X, et al. Numerical simulations of fish movement in axial pump using immersed boundary method[J]. Journal of Hydroelectric Engineering, 2021, 40(7):95-104. (in Chinese)
[45] YANG D D, ZHAO M X, SHEN L, et al. Effects of operating condition on fish behavior and fish injury in an axial pump[J]. Science China Technological Sciences, 2022, 65(1):157-168.
[46] YANG D D, LUO X W, LIU D M, et al. Unstable flow characteristics in a pump-turbine simulated by a modified partially-averaged Navier-Stokes method[J]. Science China Technological Sciences, 2019, 62(3):406-416.
[47] 田中宏. 高水头水泵水轮机的关键技术开发[J]. 水电与抽水蓄能, 2017, 3(1):39-45, 54. HIROSHI T. Key technology development of high head pump turbine[J]. Hydropower and Pumped Storage, 2017, 3(1):39-45, 54. (in Chinese)
[48] 徐连琛, 刘德民, 刘小兵, 等. 高水头水泵水轮机无叶区压力脉动综述[J]. 水电与抽水蓄能, 2020, 6(6):9-19. XU L C, LIU D M, LIU X B, et al. A review on pressure fluctuations in the vane-less space of high-head pump-turbine[J]. Hydropower and Pumped Storage, 2020, 6(6):9-19. (in Chinese)
[49] 罗先武, 季斌, 彭晓星, 等. 空化基础理论及应用[M]. 北京:清华大学出版社, 2020. LUO X W, JI B, PENG X X, et al. Basics of cavitation and its applications[M]. Beijing:Tsinghua University Press, 2020. (in Chinese)
[50] 刘德民, 许唯林, 赵永智. 变速抽水蓄能机组空化特性及运转特性研究[J]. 水电与抽水蓄能, 2020, 6(4):36-45. LIU D M, XU W L, ZHAO Y Z. Study on cavitation and operation characteristics of variable speed pumped storage units[J]. Hydropower and Pumped Storage, 2020, 6(4):36-45. (in Chinese)
[51] 王本宏, 王福军, 王超越. 大型水泵滑动轴承油膜刚度对转子动力特性影响[J]. 水电与抽水蓄能, 2021, 7(2):20-25. WANG B H, WANG F J, WANG C Y. Influence of oil film stiffness of sliding bearing on rotor dynamic characteristics for large pump[J]. Hydropower and Pumped Storage, 2021, 7(2):20-25. (in Chinese)
[52] LUO X W, ZHU L, ZHUANG B T, et al. A novel shaft-less double suction mini pump[J]. Science in China Series E:Technological Sciences, 2010, 53(1):105-110.
[53] 刘小民, 刘翔, 李典, 等. 仿生叶片对多翼离心风机噪声影响的数值研究[J]. 中国科技论文, 2015, 10(11):1309-1315. LIU X M, LIU X, LI D, et al. Numerical study of the effects of bionic blade on the aerodynamic noise of multi-blade centrifugal fan[J]. China Sciencepaper, 2015, 10(11):1309-1315. (in Chinese)
[54] JIANG B Y, WANG J, YANG X P, et al. Tonal noise reduction by unevenly spaced blades in a forward-curved-blades centrifugal fan[J]. Applied Acoustics, 2019, 146:172-183.
[55] 韩艳龙, 陈二云, 杨爱玲, 等. 蜗舌结构对离心风机动静干涉噪声的影响[J]. 热能动力工程, 2021, 36(6):30-38. HAN Y L, CHEN E Y, YANG A L, et al. Influence of volute tongue structure on static interference noise of centrifugal fan[J]. Journal of Engineering for Thermal Energy and Power, 2021, 36(6):30-38. (in Chinese)
[56] International Hydropower Association. Renewables 2021 global status report[R/OL]. (2021-06-11)[2021-09-08]. https://www.ren21.net/wp-content/uploads/2019/05/GSR2021_Full_Report.pdf.
[57] 王子文. 大型风力机叶片弯扭耦合特性研究及轻量化设计[D]. 武汉:华中科技大学, 2019. WANG Z W. Research on bend-twist coupling characteristics and lightweight design of large wind turbine blade[D]. Wuhan:Huazhong University of Science & Technology, 2019. (in Chinese)
[58] 程浩. 海上大型风力机瞬态气动弹性FSI仿真与气动性能分析[D]. 济南:山东大学, 2020. CHENG H. Transient aeroelastic interaction FSI simulation and aerodynamic performance analysis of large offshore wind turbine[D]. Ji'nan:Shandong University, 2020. (in Chinese)
[59] SANTO G, PEETERS M, VAN PAEPEGEM W, et al. Fluid-structure interaction simulations of a wind gust impacting on the blades of a large horizontal axis wind turbine[J]. Energies, 2020, 13(3):509. DOI:10.3390/en13030509.
[60] FAN Y J, MU A L, MA T. Study on the application of energy storage system in offshore wind turbine with hydraulic transmission[J]. Energy Conversion and Management, 2016, 110:338-346.
[61] 胥蕊娜, 李晓阳, 廖致远, 等. 航天飞行器热防护相变发汗冷却研究进展[J]. 清华大学学报(自然科学版), 2021, 61(12):1341-1352.XU R N, LI X Y, LIAO Z Y, et al. Research progress in transpiration cooling with phase change[J]. Journal of Tsinghua University (Science and Technology), 2021, 61(12):1341-1352. (in Chinese)
[62] WANG C Y, WANG F J, AN D S, et al. A general alternate loading technique and its applications in the inverse designs of centrifugal and mixed-flow pump impellers[J]. Science China Technological Sciences, 2021, 64(4):898-918.
[63] HUANG R F, LUO X W, JI B, et al. Multi-objective optimization of a mixed-flow pump impeller using modified NSGA-II algorithm[J]. Science China Technological Sciences, 2015, 58(12):2122-2130.
[64] SONG X Y, WANG L, LUO X W. Airfoil optimization using a machine learning-based optimization algorithm[C]//Proceedings of the 16th Asian International Conference on Fluid Machinery, Virtual Conference. 2021:AICFM162021-00128.
[65] 高金吉. 工业互联网赋能装备智能运维与自主健康[J]. 计算机集成制造系统, 2019, 25(12):3013-3025. GAO J J. Intelligent maintenance and autonomous health of equipments enabled by industrial internet[J]. Computer Integrated Manufacturing Systems, 2019, 25(12):3013-3025. (in Chinese)
[66] 陆力, 彭忠年, 王鑫, 等. 水力机械研究领域的发展[J]. 中国水利水电科学研究院学报, 2018, 16(5):442-450. LU L, PENG Z N, WANG X, et al. Review on hydraulic machinery research[J]. Journal of China Institute of Water Resources and Hydropower Research, 2018, 16(5):442-450. (in Chinese)
[1] 张益源, 赵嘉昊, 尤政. 面向感知微系统的系统级设计方法[J]. 清华大学学报(自然科学版), 2019, 59(3): 236-242.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn