Effects of complicated boundaries and extreme conditions on the flow structure and transport of single- and multi-phase turbulence
WANG Dongpu1, WANG Ziqi1, LIU Shuang1, JIANG Linfeng1, YI Lei1, SUN Chao1,2
1. Center for Combustion Energy, Key Laboratory for Thermal Science and Power Engineering of MoE, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China; 2. Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
Abstract:Single- and multi-phase turbulent flows occur throughout nature as well as in engineering applications. These are strongly influenced by complicated boundaries and extreme conditions. This study shows that the turbulent structures and the transport efficiency are influenced by the complex conditions in various systems, such as the atmosphere, oceans, the earth core, aero-engines, oil extraction, and chemical production. This paper reviews the advances in turbulent flow studies for complicated boundaries and extreme conditions in terms of the effects of the complex boundaries on the thermal turbulence, the influence of supergravity and porous media on the turbulent structures and transport efficiency, and the dynamics of particles in turbulent flows and turbulent emulsions. This paper then also identifies future research directions.
王东璞, 王子奇, 刘爽, 蒋林峰, 易磊, 孙超. 复杂边界和极端条件对单相和多相湍流结构和输运的影响[J]. 清华大学学报(自然科学版), 2022, 62(4): 758-773.
WANG Dongpu, WANG Ziqi, LIU Shuang, JIANG Linfeng, YI Lei, SUN Chao. Effects of complicated boundaries and extreme conditions on the flow structure and transport of single- and multi-phase turbulence. Journal of Tsinghua University(Science and Technology), 2022, 62(4): 758-773.
[1] BÉNARD H. Les tourbillons cellulaires dans une nappe liquide.-Méthodes optiques d'observation et d'enregistrement[J]. Journal de Physique Théorique et Appliquée, 1901, 10(1):254-266. [2] RAYLEIGH L. On convection currents in a horizontal layer of fluid, when the higher temperature is on the under side[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1916, 32(192):529-546. [3] AHLERS G, GROSSMANN S, LOHSE D. Heat transfer and large scale dynamics in turbulent Rayleigh-Bénard convection[J]. Reviews of Modern Physics, 2009, 81(2):503-537. [4] LOHSE D, XIA K Q. Small-scale properties of turbulent Rayleigh-Bénard convection[J]. Annual Review of Fluid Mechanics, 2010, 42:335-364. [5] CHILLÀ F, SCHUMACHER J. New perspectives in turbulent Rayleigh-Bénard convection[J]. The European Physical Journal E, 2012, 35(7):58. [6] XIA K Q. Current trends and future directions in turbulent thermal convection[J]. Theoretical and Applied Mechanics Letters, 2013, 3(5):052001. [7] ZHU X J, STEVENS R J A M, VERZICCO R, et al. Roughness-facilitated local 1/2 scaling does not imply the onset of the ultimate regime of thermal convection[J]. Physical Review Letters, 2017, 119(15):154501. [8] 朱旭, 张义招, 周全, 等. 粗糙壁面Rayleigh-Bénard湍流热对流研究进展[J]. 中国科学:物理学 力学 天文学, 2018, 48(9):094701. ZHU X, ZHANG Y Z, ZHOU Q, et al. Progresses in turbulent Rayleigh-Bénard convection over rough surfaces[J]. SCIENTIA SINICA Physica, Mechanica & Astronomica, 2018, 48(9):094701. (in Chinese) [9] KING E M, STELLMACH S, NOIR J, et al. Boundary layer control of rotating convection systems[J]. Nature, 2009, 457(7227):301-304. [10] KUNNEN R P J, STEVENS R J A M, OVERKAMP J, et al. The role of stewartson and Ekman layers in turbulent rotating Rayleigh-Bénard convection[J]. Journal of Fluid Mechanics, 2011, 688:422-442. [11] ZHANG X, VAN GILS D P M, HORN S, et al. Boundary zonal flow in rotating turbulent Rayleigh-Bénard convection[J]. Physical Review Letters, 2020, 124(8):084505. [12] AHLERS G, NIKOLAENKO A. Effect of a polymer additive on heat transport in turbulent Rayleigh-Bénard convection[J]. Physical Review Letters, 2010, 104(3):034503. [13] LAKKARAJU R, STEVENS R J A M, ORESTA P, et al. Heat transport in bubbling turbulent convection[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(23):9237-9242. [14] KRAICHNAN R H. Turbulent thermal convection at arbitrary Prandtl number[J]. The Physics of Fluids, 1962, 5(11):1374-1389. [15] ZHANG Y Z, SUN C, BAO Y, et al. How surface roughness reduces heat transport for small roughness heights in turbulent Rayleigh-Bénard convection[J]. Journal of Fluid Mechanics, 2018, 836:R2. [16] TOPPALADODDI S, WELLS A J, DOERING C R, et al. Thermal convection over fractal surfaces[J]. Journal of Fluid Mechanics, 2021, 907:A12. [17] GUZMAN D N, XIE Y B, CHEN S Y, et al. Heat-flux enhancement by vapour-bubble nucleation in Rayleigh-Bénard turbulence[J]. Journal of Fluid Mechanics, 2016, 787:331-366. [18] 温荣福, 杜宾港, 杨思艳, 等. 蒸气冷凝传热强化研究进展[J]. 清华大学学报(自然科学版), 2021, 61(12):1353-1370. WEN R F, DU B G, YANG S Y, et al. Advances in condensation heat transfer enhancement[J]. Journal of Tsinghua University (Science and Technology), 2021, 61(12):1353-1370. (in Chinese) [19] BOHN D, DEUKER E, EMUNDS R, et al. Experimental and theoretical investigations of heat transfer in closed gas-filled rotating annuli[J]. Journal of Turbomachinery, 1995, 117(1):175-183. [20] OWEN J M, LONG C A. Review of buoyancy-induced flow in rotating cavities[J]. Journal of Turbomachinery, 2015, 137(11):111001. [21] JIANG H C, ZHU X J, WANG D P, et al. Supergravitational turbulent thermal convection[J]. Science Advances, 2020, 6(40):eabb8676. [22] LIU S, JIANG L F, CHONG K L, et al. From Rayleigh-Bénard convection to porous-media convection:How porosity affects heat transfer and flow structure[J]. Journal of Fluid Mechanics, 2020, 895:A18. [23] LIU S, JIANG L F, WANG C, et al. Lagrangian dynamics and heat transfer in porous-media convection[J]. Journal of Fluid Mechanics, 2021, 917:A32. [24] JIANG L F, CALZAVARINI E, SUN C. Rotation of anisotropic particles in Rayleigh-Bénard turbulence[J]. Journal of Fluid Mechanics, 2020, 901:A8. [25] YI L, TOSCHI F, SUN C. Global and local statistics in turbulent emulsions[J]. Journal of Fluid Mechanics, 2021, 912:A13. [26] VAN GILS D P M, BRUGGERT G W, LATHROP D P, et al. The Twente turbulent Taylor-Couette (T3C) facility:Strongly turbulent (multiphase) flow between two independently rotating cylinders[J]. Review of Scientific Instruments, 2011, 82(2):025105. [27] TOPPALADODDI S, SUCCI S, WETTLAUFER J S. Roughness as a route to the ultimate regime of thermal convection[J]. Physical Review Letters, 2017, 118(7):074503. [28] ZHU X J, VERSCHOOF R A, BAKHUIS D, et al. Wall roughness induces asymptotic ultimate turbulence[J]. Nature Physics, 2018, 14(4):417-423. [29] SHEN Y, TONG P, XIA K Q. Turbulent convection over rough surfaces[J]. Physical Review Letters, 1996, 76(6):908-911. [30] TISSERAND J C, CREYSSELS M, GASTEUIL Y, et al. Comparison between rough and smooth plates within the same Rayleigh-Bénard cell[J]. Physics of Fluids, 2011, 23(1):015105. [31] XIE Y C, XI K Q. Turbulent thermal convection over rough plates with varying roughness geometries[J]. Journal of Fluid Mechanics, 2017, 825:573-599. [32] JIANG H C, ZHU X J, MATHAI V, et al. Controlling heat transport and flow structures in thermal turbulence using ratchet surfaces[J]. Physical Review Letters, 2018, 120(4):044501. [33] JIANG H C, ZHU X J, MATHAI V, et al. Convective heat transfer along ratchet surfaces in vertical natural convection[J]. Journal of Fluid Mechanics, 2019, 873:1055-1071. [34] REIMANN P. Brownian motors:Noisy transport far from equilibrium[J]. Physics Reports, 2002, 361(2-4):57-265. [35] LAGUBEAU G, LE MERRER M, CLANET C, et al. Leidenfrost on a ratchet[J]. Nature Physics, 2011, 7(5):395-398. [36] CHEN J, BAO Y, YIN Z X, et al. Theoretical and numerical study of enhanced heat transfer in partitioned thermal convection[J]. International Journal of Heat and Mass Transfer, 2017, 115:556-569. [37] BAO Y, CHEN J, LIU B F, et al. Enhanced heat transport in partitioned thermal convection[J]. Journal of Fluid Mechanics, 2015, 784:R5. [38] CHONG K L, HUANG S D, KACZOROWSKI M, et al. Condensation of coherent structures in turbulent flows[J]. Physical Review Letters, 2015, 115(26):264503. [39] GVOZDIĆ B, ALMÉRAS E, MATHAI V, et al. Experimental investigation of heat transport in homogeneous bubbly flow[J]. Journal of Fluid Mechanics, 2018, 845:226-244. [40] GVOZDIĆ B, DUNG O Y, ALMÉRAS E, et al. Experimental investigation of heat transport in inhomogeneous bubbly flow[J]. Chemical Engineering Science, 2018, 198:260-267. [41] KHANAFER K, VAFAI K, LIGHTSTONE M. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids[J]. International Journal of Heat and Mass Transfer, 2003, 46(19):3639-3653. [42] NGUYEN T B, LIU D D, KAYES M I, et al. Critical heat flux enhancement in pool boiling through increased rewetting on nanopillar array surfaces[J]. Scientific Reports, 2018, 8(1):4815. [43] STEVENS R J A M, ZHONG J Q, CLERCX H J H, et al. Transitions between turbulent states in rotating Rayleigh-Bénard convection[J]. Physical Review Letters, 2009, 103(2):024503. [44] WANG Z Q, MATHAI V, SUN C. Self-sustained biphasic catalytic particle turbulence[J]. Nature Communications, 2019, 10(1):3333. [45] WANG Z Q, MATHAI V, SUN C. Experimental study of the heat transfer properties of self-sustained biphasic thermally driven turbulence[J]. International Journal of Heat and Mass Transfer, 2020, 152:119515. [46] ESFAHANI B R, HIRATA S C, BERTI S, et al. Basal melting driven by turbulent thermal convection[J]. Physical Review Fluids, 2018, 3(5):053501. [47] SATBHAI O, ROY S, GHOSH S, et al. Comparison of the quasi-steady-state heat transport in phase-change and classical Rayleigh-Bénard convection for a wide range of Stefan number and Rayleigh number[J]. Physics of Fluids, 2019, 31(9):096605. [48] MADRUGA S, CURBELO J. Dynamic of plumes and scaling during the melting of a phase change material heated from below[J]. International Journal of Heat and Mass Transfer, 2018, 126:206-220. [49] FAVIER B, PURSEED J, DUCHEMIN L. Rayleigh-Bénard convection with a melting boundary[J]. Journal of Fluid Mechanics, 2019, 858:437-473. [50] DIETSCHE C, MÜLLER U. Influence of Bénard convection on solid-liquid interfaces[J]. Journal of Fluid Mechanics, 1985, 161:249-268. [51] PURSEED J, FAVIER B, DUCHEMIN L, et al. Bistability in Rayleigh-Bénard convection with a melting boundary[J]. Physical Review Fluids, 2020, 5(2):023501. [52] VASIL G M, PROCTOR M R E. Dynamic bifurcations and pattern formation in melting-boundary convection[J]. Journal of Fluid Mechanics, 2011, 686:77-108. [53] SUGAWARA M, IRVINE T F. The effect of concentration gradient on the melting of a horizontal ice plate from above[J]. International Journal of Heat and Mass Transfer, 2000, 43(9):1591-1601. [54] MERGUI S, GEOFFROY S, BEHARD C. Ice block melting into a binary solution:Coupling of the interfacial equilibrium and the flow structures[J]. Journal of Heat Transfer, 2002, 124(6):1147-1157. [55] SUGAWARA M, TAMURA E, SATOH Y, et al. Visual observations of flow structure and melting front morphology in horizontal ice plate melting from above into a mixture[J]. Heat and Mass Transfer, 2007, 43(10):1009-1018. [56] HU Y, LI D C, SHU S, et al. Lattice Boltzmann simulation for three-dimensional natural convection with solid-liquid phase change[J]. International Journal of Heat and Mass Transfer, 2017, 113:1168-1178. [57] DHAIDAN N S, KHODADADI J M. Melting and convection of phase change materials in different shape containers:A review[J]. Renewable and Sustainable Energy Reviews, 2015, 43:449-477. [58] SUGAWARA M, KOMATSU Y, BEER H. Melting and freezing around a horizontal cylinder placed in a square cavity[J]. Heat and Mass Transfer, 2008, 45(1):83-92. [59] WANG Z Q, CALZAVARINI E, SUN C, et al. How the growth of ice depends on the fluid dynamics underneath[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(10):e2012870118. [60] CIONI S, CILIBERTO S, SOMMERIA J. Strongly turbulent Rayleigh-Bénard convection in mercury:Comparison with results at moderate Prandtl number[J]. Journal of Fluid Mechanics, 1997, 335:111-140. [61] CHAVANNE X, CHILLÀ F, CASTAING B, et al. Observation of the ultimate regime in Rayleigh-Bénard convection[J]. Physical Review Letters, 1997, 79(19):3648-3651. [62] NIEMELA J J, SREENIVASAN K R. Confined turbulent convection[J]. Journal of Fluid Mechanics, 2003, 481:355-384. [63] DU PUITS R, RESAGK C, THESS A. Mean velocity profile in confined turbulent convection[J]. Physical Review Letters, 2007, 99(23):234504. [64] FUNFSCHILLING D, BODENSCHATZ E, AHLERS G. Search for the "ultimate state" in turbulent Rayleigh-Bénard convection[J]. Physical Review Letters, 2009, 103(1):014503. [65] HE X Z, FUNFSCHILLING D, NOBACH H. Transition to the ultimate state of turbulent Rayleigh-Bénard convection[J]. Physical Review Letters, 2012, 108(2):024502. [66] PROUDMAN J. On the motion of solids in a liquid possessing vorticity[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 1916, 92(642):408-424. [67] TAYLOR G I. The motion of a sphere in a rotating liquid[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 1922, 102(715):180-189. [68] GROSSMANN S, LOHSE S. Scaling in thermal convection:A unifying theory[J]. Journal of Fluid Mechanics, 2000, 407:27-56. [69] WANG D P, JIANG H C, LIU S, et al. Effects of radius ratio on annular centrifugal Rayleigh-Rayleigh-Bénard convection[J]. Journal of Fluid Mechanics, 2022, 930:A19. [70] CHRISTENSEN U R. Zonal flow driven by strongly supercritical convection in rotating spherical shells[J]. Journal of Fluid Mechanics, 2002, 470:115-133. [71] HEIMPEL M, AURNOU J, WICHT J. Simulation of equatorial and high-latitude jets on Jupiter in a deep convection model[J]. Nature, 2005, 438(7065):193-196. [72] PITZ D B, CHEW J W, MARXEN O, et al. Direct numerical simulation of rotating cavity flows using a spectral element-Fourier method[J]. Journal of Engineering for Gas Turbines and Power, 2017, 139(7):072602. [73] PITZ D B, MARXEN O, CHEW J W. Onset of convection induced by centrifugal buoyancy in a rotating cavity[J]. Journal of Fluid Mechanics, 2017, 826:484-502. [74] HUPPERT H E, NEUFELD J A. The fluid mechanics of carbon dioxide sequestration[J]. Annual Review of Fluid Mechanics, 2014, 46:255-272. [75] NIELD D A, BEJAN A. Convection in porous media[M]. New York:Springer, 2006. [76] VAFAI K. Handbook of porous media[M]. Boca Raton:Taylor & Francis, 2015. [77] HEWITT D R, NEUFELD J A, LISTER J R. Ultimate regime of high Rayleigh number convection in a porous medium[J]. Physical Review Letters, 2012, 108(22):224503. [78] WEN B L, CORSON L T, CHINI G P. Structure and stability of steady porous medium convection at large Rayleigh number[J]. Journal of Fluid Mechanics, 2015, 772:197-224. [79] HEWITT D R. Vigorous convection in porous media[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2020, 476(2239):20200111. [80] BERKOWITZ B, CORTIS A, DENTZ M, et al. Modeling non-Fickian transport in geological formations as a continuous time random walk[J]. Reviews of Geophysics, 2006, 44(2):RG2003. [81] SOUZY M, LHUISSIER H, MÉHEUST Y, et al. Velocity distributions, dispersion and stretching in three-dimensional porous media[J]. Journal of Fluid Mechanics, 2020, 891:A16. [82] HEYMSFIELD A J. Precipitation development in stratiform ice clouds:A microphysical and dynamical study[J]. Journal of the Atmospheric Sciences, 1977, 34(2):367-381. [83] ARDESHIRI H, SCHMITT F G, SOUISSI S, et al. Copepods encounter rates from a model of escape jump behaviour in turbulence[J]. Journal of Plankton Research, 2017, 39(6):878-890. [84] OLSON J A, KEREKES R J. The motion of fibres in turbulent flow[J]. Journal of Fluid Mechanics, 1998, 377:47-64. [85] KRAMEL S, VOTH G A, TYMPEL S, et al. Preferential rotation of chiral dipoles in isotropic turbulence[J]. Physical Review Letters, 2016, 117(15):154501. [86] PARSA S, VOTH G A. Inertial range scaling in rotations of long rods in turbulence[J]. Physical Review Letters, 2014, 112(2):024501. [87] BOUNOUA S, BOUCHET G, VERHILLE G. Tumbling of inertial fibers in turbulence[J]. Physical Review Letters, 2018, 121(12):124502. [88] CHEVILLARD L, MENEVEAU C. Orientation dynamics of small, triaxial-ellipsoidal particles in isotropic turbulence[J]. Journal of Fluid Mechanics, 2013, 737:571-596. [89] PUJARA N, VARIANO E A. Rotations of small, inertialess triaxial ellipsoids in isotropic turbulence[J]. Journal of Fluid Mechanics, 2017, 821:517-538. [90] JEFFERY G B. The motion of ellipsoidal particles immersed in a viscous fluid[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 1922, 102(715):161-179. [91] ZHAO L H, CHALLABOTLA N R, ANDERSSON H I, et al. Rotation of nonspherical particles in turbulent channel flow[J]. Physical Review Letters, 2015, 115(24):244501. [92] MARCHIOLI C, SOLDATI A. Rotation statistics of fibers in wall shear turbulence[J]. Acta Mechanica, 2013, 224(10):2311-2329. [93] CHALLABOTLA N R, ZHAO L H, ANDERSSON H I. Orientation and rotation of inertial disk particles in wall turbulence[J]. Journal of Fluid Mechanics, 2015, 766:R2. [94] BAKHUIS D, MATHAI V, VERSCHOOF R A, et al. Statistics of rigid fibers in strongly sheared turbulence[J]. Physical Review Fluids, 2019, 4(7):072301. [95] MORTENSEN P H, ANDERSSON H I, GILLISSEN J J J, et al. Dynamics of prolate ellipsoidal particles in a turbulent channel flow[J]. Physics of Fluids, 2008, 20(9):093302. [96] DIBENEDETTO M H, OUELLETTE N T, KOSEFF J R. Transport of anisotropic particles under waves[J]. Journal of Fluid Mechanics, 2018, 837:320-340. [97] SHRAIMAN B I, SIGGIA E D. Heat transport in high-Rayleigh-number convection[J]. Physical Review A, 1990, 42(6):3650-3653. [98] MANDAL A, SAMANTA A, BERA A, et al. Characterization of oil-water emulsion and its use in enhanced oil recovery[J]. Industrial & Engineering Chemistry Research, 2010, 49(24):12756-12761. [99] WANG L J, LI X F, ZHANG G Y, et al. Oil-in-water nanoemulsions for pesticide formulations[J]. Journal of Colloid and Interface Science, 2007, 314(1):230-235. [100] MCCLEMENTS D J. Critical review of techniques and methodologies for characterization of emulsion stability[J]. Critical Reviews in Food Science and Nutrition, 2007, 47(7):611-649. [101] VILLERMAUX E. Fragmentation[J]. Annual Review of Fluid Mechanics, 2007, 39:419-446. [102] ZHOU Q, SUN C, XIA K Q. Morphological evolution of thermal plumes in turbulent Rayleigh-Bénard convection[J]. Physical Review Letters, 2007, 98(7):074501. [103] BOSBACH J, WEISS S, AHLERS G. Plume fragmentation by bulk interactions in turbulent Rayleigh-Bénard convection[J]. Physical Review Letters, 2012, 108(5):054501. [104] GROSSMANN S, LOHSE D, SUN C. High-Reynolds number Taylor-Couette turbulence[J]. Annual Review of Fluid Mechanics, 2016, 48:53-80. [105] KOLMOGOROV A N. On the breakage of drops in a turbulent flow[J]. Doklady Akademii Nauk SSSR, 1949, 66:825-828. [106] HINZE J O. Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes[J]. AIChE Journal, 1955, 1(3):289-295. [107] BAKHUIS D, EZETA R, BULLEE P A, et al. Catastrophic phase inversion in high-Reynolds-number turbulent Taylor-Couette flow[J]. Physical Review Letters, 2021, 126(6):064501. [108] KRIEGER I M, DOUGHERTY T J. A mechanism for non-Newtonian flow in suspensions of rigid spheres[J]. Transactions of the Society of Rheology, 1959, 3(1):137-152. [109] GUAZZELLI É, POULIQUEN O. Rheology of dense granular suspensions[J]. Journal of Fluid Mechanics, 2018, 852:P1. [110] HERSCHEL W H, BULKLEY R. Konsistenzmessungen von Gummi-Benzoll sungen[J]. Kolloid-Zeitschrift, 1926, 39(4):291-300. [111] LI Q, LUO K H, KANG Q J, et al. Lattice Boltzmann methods for multiphase flow and phase-change heat transfer[J]. Progress in Energy and Combustion Science, 2016, 52:62-105. [112] YAMAMOTO K, HE X Y, DOOLEN G D. Simulation of combustion field with lattice Boltzmann method[J]. Journal of Statistical Physics, 2002, 107(1-2):367-383. [113] YAMAMOTO K. LB simulation on combustion with turbulence[J]. International Journal of Modern Physics B, 2003, 17(1-2):197-200. [114] YAMAMOTO K, HE X Y, DOOLEN G D. Combustion simulation using the lattice Boltzmann method[J]. JSME International Journal Series B, Fluids and Thermal Engineering, 2004, 47(2):403-409. [115] YAMAMOTO K, TAKADA N. LB simulation on soot combustion in porous media[J]. Physica A:Statistical Mechanics and its Applications, 2006, 362(1):111-117. [116] GAN Y B, XU A G, ZHANG G C, et al. Lattice Boltzmann study of thermal phase separation:Effects of heat conduction, viscosity and Prandtl number[J]. EPL (Europhysics Letters), 2012, 97(4):44002. [117] GAN Y B, XU A G, ZHANG G C, et al. Phase separation in thermal systems:A lattice Boltzmann study and morphological characterization[J]. Physical Review E, 2011, 84(4):046715. [118] LIN C D, LUO K H, XU A G, et al. Multiple-relaxation-time discrete Boltzmann modeling of multicomponent mixture with nonequilibrium effects[J]. Physical Review E, 2021, 103(1):013305.