Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (8): 1341-1350    DOI: 10.16511/j.cnki.qhdxxb.2022.25.016
  智能预测反馈 本期目录 | 过刊浏览 | 高级检索 |
高拱坝蓄水期库岸变形与水库诱发地震相关性研究
王兴旺1, 刘耀儒1, 吕帅2, 杨强1
1. 清华大学 水沙科学与水利水电工程国家重点实验室, 北京 100084;
2. 徐州市水务局, 徐州 221018
Relationship between reservoir bank deformation and reservoir-induced earthquakes during the impounding of high arch dams
WANG Xingwang1, LIU Yaoru1, LÜ Shuai2, YANG Qiang1
1. State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China;
2. Xuzhou Water Bureau, Xuzhou 221018, China
全文: PDF(9193 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 高拱坝蓄水过程中观测到了库岸变形和水库诱发地震现象,水库诱发地震可能是边坡大范围变形的前兆,这给高拱坝的长期、高效和安全运行带来了巨大挑战。基于对溪洛渡拱坝蓄水期库岸变形监测资料的分析和对蓄水前后地震监测数据的分析,研究了蓄水后库岸变形的规律以及蓄水前后库区地震活动的变化规律,对水库蓄水后库岸变形和水库诱发地震的产生机理以及它们之间的相关性进行了研究。结果表明,库岸变形和水库诱发地震在规律和机理上均存在一定的相关性,两者都存在快速响应和滞后响应的特征,经历了由快变慢再到平缓的过程。快速响应是由于水的力学作用导致有效应力降低,产生了不可逆塑性变形和断层滑动。滞后响应是由于库水的物理化学作用降低了岩体和断层的抗剪强度,导致岩体的缓慢变形和断层的滑动。两种现象在规律和机理上的相关性为高拱坝蓄水期的智能监测和安全预警提供了新思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词 高拱坝蓄水期库岸变形水库诱发地震相关性分析    
Abstract:Reservoir bank deformation and reservoir-induced earthquakes have been observed during the impounding of arch dams. Reservoir-induced earthquakes may be precursors of widespread slope deformation, which can endanger the long-term, efficient and safe operation of arch dams. This paper presents an analysis of deformation monitoring data and seismic monitoring data before and after impounding of the Xiluodu arch dam. The results compare the reservoir bank deformation and the seismic activity variations in the reservoir area before and after impoundment which were used to analyze the mechanisms relating the reservoir bank deformation and the reservoir-induced earthquakes. The results show that the two processes are correlated with initially fast responses including hysteresis transitioning to slower responses and then to constant values. The fast response is due to the reduction of the effective stress caused by the mechanical action of the water that leads to irreversible plastic deformation and fault slip. The hysteresis is due to the decreased shear strength of the rock mass and faults due to the physicochemical action of the reservoir water, which leads to slow deformation of the rock mass and the sliding of faults. The correlation between the two phenomena provides a basis for intelligent monitoring and safety warnings of high arch dams during impounding.
Key wordshigh arch dams    impounding    reservoir bank deformation    reservoir-induced earthquakes    correlation analyses
收稿日期: 2021-10-28      出版日期: 2022-03-31
基金资助:国家重点研发计划资助(2018YFC0407005);国家自然科学基金项目(41961134032,51739006)
通讯作者: 刘耀儒,教授,E-mail:liuyaoru@tsinghua.edu.cn      E-mail: liuyaoru@tsinghua.edu.cn
作者简介: 王兴旺(1995—),男,博士研究生。
引用本文:   
王兴旺, 刘耀儒, 吕帅, 杨强. 高拱坝蓄水期库岸变形与水库诱发地震相关性研究[J]. 清华大学学报(自然科学版), 2022, 62(8): 1341-1350.
WANG Xingwang, LIU Yaoru, LÜ Shuai, YANG Qiang. Relationship between reservoir bank deformation and reservoir-induced earthquakes during the impounding of high arch dams. Journal of Tsinghua University(Science and Technology), 2022, 62(8): 1341-1350.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2022.25.016  或          http://jst.tsinghuajournals.com/CN/Y2022/V62/I8/1341
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] 何健. 西南地区地应力特征及工程区域地应力反演研究[D]. 重庆:重庆大学, 2017. HE J. The study of geostress characteristics and engineering areas geostress inversion in the Southwest region[D]. Chongqing:Chongqing University, 2017. (in Chinese)
[2] 黄润秋. 中国西南岩石高边坡的主要特征及其演化[J]. 地球科学进展, 2005, 20(3):292-297. HUANG R Q. Main characteristics of hign rock slopes in southwestern China and their dynamic evolution[J]. Advances in Earth Science, 2005, 20(3):292-297. (in Chinese)
[3] 何柱. 考虑水影响的蠕变损伤模型及岩体长期稳定性分析[D]. 北京:清华大学, 2017. HE Z. Creep damage model and long-term stability analysis of rock mass with water influence[D]. Beijing:Tsinghua University, 2017. (in Chinese)
[4] ICOLD. Lessons from dam incidents[R]. Paris:Reduced Edition, 1973.
[5] ICOLD. Deterioration of dams and reserviors[R]. Paris:Reduced Edition, 1983.
[6] ICOLD. Statistical analysis of dam failures[R]. Paris, 1995.
[7] 方崇惠, 段亚辉. 溃坝事件统计分析及其警示[J]. 人民长江, 2010, 41(11):96-101. FANG C H, DUAN Y H. Statistical analysis of dam-break incidents and its cautions[J]. Yangtze River, 2010, 41(11):96-101. (in Chinese)
[8] 武明鑫, 江汇, 张楚汉. 高混凝土坝蓄水河谷-库坝变形规律[J]. 水力发电学报, 2019, 38(8):1-14. WU M X, JIANG H, ZHANG C H. General rules of dam-valley deformation due to reservoir impoundment[J]. Journal of Hydroelectric Engineering, 2019, 38(8):1-14. (in Chinese)
[9] 周志芳, 庄超, 李鸣威, 等. 水库库盘变形的特征及其地质成因分析[J]. 工程地质学报, 2019, 27(1):38-47. ZHOU Z F, ZHUANG C, LI M W, et al. Analysis on the characteristics and geological causes of reservoir plate deformation[J]. Journal of Engineering Geology, 2019, 27(1):38-47. (in Chinese)
[10] 周志芳, 李鸣威, 庄超, 等. 溪洛渡水电站谷幅变形成因与形成条件[J]. 河海大学学报(自然科学版), 2018, 46(6):497-505. ZHOU Z F, LI M W, ZHUANG C, et al. Impact factors and forming conditions of valley deformation of Xiluodu Hydropower Station[J]. Journal of Hohai University (Natural Sciences), 2018, 46(6):497-505. (in Chinese)
[11] 刘有志, 张国新, 程恒, 等. 特高拱坝谷幅缩窄成因及对大坝变形和应力的影响分析[C]//高坝建设与运行管理的技术进展——中国大坝协会2014学术年会论文集. 贵阳, 中国:中国大坝协会, 2014:10. LIU Y Z, ZHANG G X, CHENG H, et al. The cause of valley amplitude narrowing of extra-high arch dam and its influence on dam deformation and stress[C]//Technical Progress of High Dam Construction and Operation Management-Proceedings of the 2014 Academic Annual Conference of China Dam Association. Guiyang, China:China Dam Association, 2014:10. (in Chinese)
[12] 杨强, 潘元炜, 程立, 等. 高拱坝谷幅变形机制及非饱和裂隙岩体有效应力原理研究[J]. 岩石力学与工程学报, 2015, 34(11):2258-2269. YANG Q, PAN Y W, CHENG L, et al. Mechanism of valley deformation of high arch dam and effective stress principle for unsaturated fractured rock mass[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(11):2258-2269. (in Chinese)
[13] 梁国贺, 胡昱, 樊启祥, 等. 溪洛渡高拱坝蓄水期谷幅变形特性与影响因素分析[J]. 水力发电学报, 2016, 35(9):101-110. LIANG G H, HU Y, FAN Q X, et al. Analysis on valley deformation of Xiluodu high arch dam during impoundment and its influencing factors[J]. Journal of Hydroelectric Engineering, 2016, 35(9):101-110. (in Chinese)
[14] PARONUZZI P, RIGO E, BOLLA A. Influence of filling-drawdown cycles of the Vajont reservoir on Mt. Toc slope stability[J]. Geomorphology, 2013, 191:75-93.
[15] LOMBARDI G. Ground-water induced settlements in rock masses and consequences for dams[C]//IALAD-Integrity Assessment of Large Concrete Dams. Zurich, Switzerland:IALAD, 2004:1-17.
[16] ZANGERL C, EVANS K F, EBERHARDT E, et al. Consolidation settlements above deep tunnels in fractured crystalline rock:Part 1-Investigations above the Gotthard highway tunnel[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(8):1195-1210.
[17] 常廷改, 胡晓. 水库诱发地震研究进展[J]. 水利学报, 2018, 49(9):1109-1122. CHANG T G, HU X. Research progress on reservoir induced earthquake[J]. Journal of Hydraulic Engineering, 2018, 49(9):1109-1122. (in Chinese)
[18] 沈崇刚, 陈厚群, 张楚汉, 等. 新丰江水库地震及其对大坝的影响[J]. 中国科学, 1974, 4(2):184-205. SHEN C G, CHEN H Q, ZHANG C H, et al. Xinfengjiang Reservoir earthquake and its impact on the dam[J]. Science in China, 1974, 4(2):184-205. (in Chinese)
[19] 王妙月, 杨懋源, 胡毓良, 等. 新丰江水库地震的震源机制及其成因的初步探讨[J]. 中国科学, 1976, 6(1):85-97. WANG M Y, YANG M Y, HU Y L, et al. A preliminary study on the mechanism of the reservoir impounding earthquakes at hsinfengkiang[J]. Scientia Sinica, 1976, 19(1):149-169. (in Chinese)
[20] 杨杰, 胡德秀, 关文海. 李家峡拱坝左岸高边坡岩体变位与安全性态分析[J]. 岩石力学与工程学报, 2005, 24(19):3551-3560. YANG J, HU D X, GUAN W H. Analysis of high slope rock deformation and safety performance for left bank of Lijiaxia arch dam[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(19):3551-3560. (in Chinese)
[21] CHENG L, LIU Y R, YANG Q, et al. Mechanism and numerical simulation of reservoir slope deformation during impounding of high arch dams based on nonlinear FEM[J]. Computers and Geotechnics, 2017, 81:143-154.
[22] 魏海, 杨华舒, 王铭明, 等. 基于可靠度理论的水库诱发地震分析[J]. 地震地质, 2016, 38(4):885-896. WEI H, YANG H S, WANG M M, et al. Reliability based analysis on reservoir induced earthquakes[J]. Seismology and Geology, 2016, 38(4):885-896. (in Chinese)
[23] 吴绍祖, 陈光, 丁学仁, 等. 福建古田水口库区ML4.8震群分析与水库诱发地震探讨[J]. 地震研究, 2010, 33(1):25-30. WU S Z, CHEN G, DING X R, et al. Discussion on Shuikou reservoir ML4.8 earthquake in Gatian, Fujian province and reservoir-induced earthquake[J]. Journal of Seismological Research, 2010, 33(1):25-30. (in Chinese)
[24] 陈厚群, 徐泽平, 李敏. 关于高坝大库与水库地震的问题[J]. 水力发电学报, 2009, 28(5):1-7. CHEN H Q, XU Z P, LI M. Discussion on the relationship between large reservoirs and seismicity[J]. Journal of Hydroelectric Engineering, 2009, 28(5):1-7. (in Chinese)
[25] 张超然, 陈先明, 朱红兵. 金沙江下游梯级水电站抗震安全分析[J]. 四川大学学报(工程科学版), 2009, 41(3):1-6. ZHANG C R, CHEN X M, ZHU H B. Aseismatic safety analysis of the cascade hydroelectric power stations on the lower Jinsha river[J]. Journal of Sichuan University (Engineering Science Edition), 2009, 41(3):1-6. (in Chinese)
[26] 刁桂苓, 王曰风, 冯向东, 等. 溪洛渡库首区蓄水后震源机制分析[J]. 地震地质, 2014, 36(3):644-657. DIAO G L, WANG Y F, FENG X D, et al. Analysis of characteristics of focal mechanism in reservoir head region of Xiluodu reservoir after impoundment[J]. Seismology and Geology, 2014, 36(3):644-657. (in Chinese)
[27] 潘元炜. 蓄水期和运行期库盆变形机制及对高拱坝安全的影响[D]. 北京:清华大学, 2015. PAN Y W. Reservoir deformation mechanism during impoundment and operationand its influence to safety of high arch dam[D]. Beijing:Tsinghua University, 2015. (in Chinese)
[28] 国家科技基础条件平台-国家地震科学数据共享中心. http://data.earthquake.cn/. National Platform for Basic Conditions of Science and Technology-National Seismic Science Data Sharing Center. http://data.earthquake.cn/. (in Chinese)
[29] FAKHIMI A A, FAIRHURST C. A model for the time-dependent behavior of rock[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1994, 31(2):117-126.
[30] 常春, 周德培, 郭增军. 水对岩石屈服强度的影响[J]. 岩石力学与工程学报, 1998, 17(4):407-411. CHANG C, ZHOU D P, GUO Z J. The effect of water on rock yield strength[J]. Chinese Journal of Rock Mechanics and Engineering, 1998, 17(4):407-411. (in Chinese)
[31] 窦子豪, 赵志宏, 高天阳, 等. 水岩作用下花岗岩裂隙剪切力学特性演化规律[J]. 清华大学学报(自然科学版), 2021, 61(8):792-798. DOU Z H, ZHAO Z H, GAO T Y, et al. Evolution law of water-rock interaction on the shear behavior of granite fractures[J]. Journal of Tsinghua University (Science & Technology), 2021, 61(8):792-798. (in Chinese)
[32] 孙欢, 刘晓丽, 王恩志, 等. 岩石破裂过程中裂隙流体X射线造影试验及应用[J]. 清华大学学报(自然科学版), 2021, 61(8):778-791. SUN H, LIU X L, WANG E Z, et al. X-ray radiography for visualization of fissure fluid flows during rock failures[J]. Journal of Tsinghua University (Science & Technology), 2021, 61(8):778-791. (in Chinese)
[33] HOEK E, BRAY J W. Rock slope engineering[M]. 2nd ed. London:The Institution of Metallurgy, 1977.
[34] 何忱, 姚池, 邵玉龙, 等. 低裂隙密度条件下三维裂隙岩体的有效渗透性[J]. 清华大学学报(自然科学版), 2021, 61(8):827-832. HE C, YAO C, SHAO Y L, et al. Effective permeability of three-dimensional fractured rock with low fracture densities[J]. Journal of Tsinghua University (Science & Technology), 2021, 61(8):827-832. (in Chinese)
[35] 谢和平. 岩石混凝土损伤力学[M]. 徐州:中国矿业大学出版社, 1990. XIE H P. Damage mechanics of rock concrete[M]. Xuzhou:China University of Mining and Technology Press, 1990. (in Chinese)
[36] 徐平, 丁秀丽, 全海, 等. 溪洛渡水电站坝址区岩体蠕变特性试验研究[J]. 岩土力学, 2003, 24(S1):220-222, 226. XU P, DING X L, QUAN H, et al. Testing study on creep behavior of rock mass at Xiluodu dam site[J]. Rock and Soil Mechanics, 2003, 24(S1):220-222, 226. (in Chinese)
[37] YANG S Q, JING H W, CHENG L. Influences of pore pressure on short-term and creep mechanical behavior of red sandstone[J]. Engineering Geology, 2014, 179:10-23.
[38] 环文林, 张晓东, 宋昭仪. 中国大陆内部走滑型发震构造粘滑运动的结构特征[J]. 地震学报, 1997, 19(3):2-11. HUAN W L, ZHANG X D, SONG Z Y. Structural characteristics of stick-slip movement of strike-slip seismogenic structures in mainland China[J]. Acta Seismologica Sinica, 1997, 19(3):2-11. (in Chinese)
[39] BRACE W F, 胡毓良. 地震机制和地震预报的新近实验研究[J]. 地震地质译丛, 1980, 2(3):27-34. BRACE W F, HU Y L. New experimental study on earthquake mechanism and prediction[J]. Seismology and Geology, 1980, 2(3):27-34. (in Chinese)
[40] 王绳祖, 张流. 剪切破裂与粘滑——浅源强震发震机制的研究[J]. 地震地质, 1984, 6(2):63-73. WANG S Z, ZHANG L. Shear fracture and stick-slip-A study on shock-generation mechanism of strong shallow earthquakes[J]. Seismology and Geology, 1984, 6(2):63-73. (in Chinese)
[41] ELLSWORTH W L. Injection-induced earthquakes[J]. Science, 2013, 341(6142):1225942.
[42] HUBBERT M K, RUBEY W W. Role of fluid pressure in mechanics of overthrust faulting a reply[J]. GSA Bulletin, 1960, 71(5):617-628.
[43] 高锐, 张宏志, 曲波. 概评水库诱发地震及激发机制[J]. 黑龙江水利科技, 2010, 38(4):147-148. GAO R, ZHANG H Z, QU B. Reservoir induced earthquake and its excitation mechanism[J]. Heilongjiang Science and Technology of Water Conservancy, 2010, 38(4):147-148. (in Chinese)
[44] GUPTA H K. A review of recent studies of triggered earthquakes by artificial water reservoirs with special emphasis on earthquakes in Koyna, India[J]. Earth-Science Reviews, 2002, 58(3-4):279-310.
[1] 庄文宇, 张如九, 徐建军, 殷亮, 魏海宁, 刘耀儒. 基于IAGA-BP算法的高拱坝-坝基力学参数反演分析[J]. 清华大学学报(自然科学版), 2022, 62(8): 1302-1313.
[2] 谭尧升, 陈文夫, 林恩德, 林鹏, 周天刚, 周孟夏, 刘春风, 裴磊, 梁程, 尚超, 杨鹏博, 姚孟迪, 李向前, 李俊平. 特高拱坝施工期多维信息模型研究与实践[J]. 清华大学学报(自然科学版), 2022, 62(12): 1884-1895.
[3] 谭尧升, 樊启祥, 汪志林, 陈文夫, 郭增光, 林恩德, 林鹏, 周天刚, 周孟夏, 刘春风, 龚攀, 裴磊. 白鹤滩特高拱坝智能建造技术与应用实践[J]. 清华大学学报(自然科学版), 2021, 61(7): 694-704.
[4] 刘有志, 张国新, 谭尧升, 刘春风, 龚攀, 裴磊. 仿真大坝建设关键技术与实践应用[J]. 清华大学学报(自然科学版), 2021, 61(7): 714-723.
[5] 乔雨, 杨宁, 谭鹏, 彭浩洋, 吴卫, 周大建, 王潇楠. 大体积混凝土红外测温影响因素研究与工程应用[J]. 清华大学学报(自然科学版), 2021, 61(7): 730-737.
[6] 王峰, 周宜红, 赵春菊, 周华维, 陈文夫, 谭尧升, 梁志鹏, 潘志国, 王放. 基于混合粒子群算法的特高拱坝不同材料热学参数反演分析[J]. 清华大学学报(自然科学版), 2021, 61(7): 747-755.
[7] 王飞, 刘金飞, 尹习双, 谭尧升, 周天刚, 杨支跃, 冯博, 杨小龙. 高拱坝智能进度仿真理论与关键技术[J]. 清华大学学报(自然科学版), 2021, 61(7): 756-767.
[8] 徐建江, 陈文夫, 谭尧升, 高世奎, 周天刚, 周孟夏, 刘春风, 梁程, 李向前. 特高拱坝混凝土运输智能化关键技术与应用[J]. 清华大学学报(自然科学版), 2021, 61(7): 768-776.
[9] 吕征, 刘耀儒, 程立, 杨强. 高拱坝河床基岩深槽处理方案[J]. 清华大学学报(自然科学版), 2019, 59(5): 373-379.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn