Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (4): 774-784    DOI: 10.16511/j.cnki.qhdxxb.2022.25.022
  论文 本期目录 | 过刊浏览 | 高级检索 |
多级压气机通流与CFD一体化优化设计方法
王啸宸1, 李雪松1, 任晓栋1, 吴宏2, 顾春伟1,2
1. 清华大学 能源与动力工程系, 燃气轮机研究所, 北京 100084;
2. 中国联合重型燃气轮机技术有限公司, 北京 102209
Integrated through-flow and CFD optimization design method of multi-stage compressors
WANG Xiaochen1, LI Xuesong1, REN Xiaodong1, WU Hong2, GU Chunwei1,2
1. Institute of Gas Turbine, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China;
2. China United Gas Turbine Technology Co. Ltd, Beijing 102209, China
全文: PDF(13393 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 针对S2流面求解的通流计算方法与全三维黏性求解的计算流体力学(computational fluid dynamics,CFD)方法是叶轮机械气动设计与分析的主要技术手段。该文基于一套自主开发的流线曲率法通流计算程序,建立了适用于多级高负荷轴流压气机的通流与CFD一体化优化设计方法。该方法由通流与CFD一体化气动分析方法和基于改进智能优化算法的设计优化方法构成。研究将其应用于某跨音三级压气机中,对其中的跨音动叶边界层分离流动问题进行合理定位。针对第一级动叶(R1)与第三级动叶(R3)开展优化设计,分别获得了三级压气机效率提升0.1%和0.3%的优化设计方案。研究表明,该方法能够实现通流与CFD分析方法优势互补,同时把握气动布局设计与细节流场结构特征,从而高效定位压气机气动性能与流场结构问题及其与叶型设计或气动布局的关联,指导优化设计方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王啸宸
李雪松
任晓栋
吴宏
顾春伟
关键词 轴流压气机通流计算方法优化设计跨音压气机边界层分离    
Abstract:Through-flow and computational fluid dynamics (CFD) calculations are the main approaches used for aerodynamic design and analyses of turbomachinery. In this study, an integrated through-flow and CFD optimization design method using an in-house through-flow code was used to analyze highly loaded multi-stage axial compressors. This method uses a multi-level aerodynamic analysis process that combines the through-flow and CFD calculations in a design optimization process that combines 3D blade design and intelligent optimization algorithms. The method is applied to a 3-stage transonic compressor and reasonably categorizes the flow problems resulting from the boundary layer separation along the transonic rotors. The analysis is used to optimize the first rotor (R1) and third rotor (R3) designs with the optimized designs giving 0.1 percent point and 0.3 percent point increases in the efficiencies of the 3-stage compressor. This study shows that this method is capable of synthesizing the advantages of the through-flow and CFD methods to simultaneously consider the characteristics of the aerodynamic configuration and flow structures. The compressor flow fields and performance can be efficiently categorized based on their relationships to the blade profile and aerodynamic configurations to provide guidance on how to optimize the design.
Key wordsaxial compressors    through-flow calculations    optimization    transonic compressors    boundary layer separation
收稿日期: 2021-09-30      出版日期: 2022-04-14
基金资助:任晓栋,副研究员,E-mail:rxd@mail.tsinghua.edu.cn
引用本文:   
王啸宸, 李雪松, 任晓栋, 吴宏, 顾春伟. 多级压气机通流与CFD一体化优化设计方法[J]. 清华大学学报(自然科学版), 2022, 62(4): 774-784.
WANG Xiaochen, LI Xuesong, REN Xiaodong, WU Hong, GU Chunwei. Integrated through-flow and CFD optimization design method of multi-stage compressors. Journal of Tsinghua University(Science and Technology), 2022, 62(4): 774-784.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2022.25.022  或          http://jst.tsinghuajournals.com/CN/Y2022/V62/I4/774
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] 李苏辉, 张归华, 吴玉新. 面向未来燃气轮机的先进燃烧技术综述[J]. 清华大学学报(自然科学版), 2021, 61(12):1423-1437.LI S H, ZHANG GH, WU Y X. Advanced combustion technologies for future gas turbines[J]. Journal of Tsinghua University (Science and Technology), 2021, 61(12):1423-1437. (in Chinese)
[2] FROST D H. A streamline curvature through-flow computer program for analysing the flow through axial-flow turbomachines:R. & M. No. 3687[R]. London:Her Majesty's Stationery Office, 1972.
[3] GU F, ANDERSON M R. CFD-based throughflow solver in a turbomachinery design system[C]//ASME Turbo Expo 2007. Montreal, Canada:ASME, 2007.
[4] WU C H. A general theory of three-dimensional flow in subsonic and supersonic turbomachines of axial-, radial- and mixed-flow types:NACA TN 2604[R]. Washington:NACA, 1952.
[5] SMITH JR L H. The radial-equilibrium equation of turbomachinery[J]. Journal of Engineering for Power, 1966, 88(1):1-12.
[6] NOVAK R A. Streamline curvature computing procedures for fluid-flow problems[J]. Journal of Engineering for Power, 1967, 89(4):478-490.
[7] DENTON J D. Throughflow calculations for transonic axial flow turbines[J]. Journal of Engineering for Power, 1978, 100(2):212-218.
[8] DENTON J D. Loss mechanisms in turbomachines[C]//ASME 1993 International Gas Turbine and Aeroengine Congress and Exposition. Cincinnati, USA:ASME, 1993.
[9] BUDO A, TERRAPON V E, ARNST M, et al. Application of a viscous through-flow model to a modern axial low-pressure compressor[C]//ASME Turbo Expo 2021:Turbomachinery Technical Conference and Exposition. ASME, 2021.
[10] GUO J, HU J, WANG X G, et al. A three-dimensional unsteady through-flow model for rotating stall in axial compressors[C]//ASME Turbo Expo 2020:Turbomachinery Technical Conference and Exposition. ASME, 2020.
[11] BANJAC M, PETROVIC M V, WIEDERMANN A. Multistage axial compressor flow field predictions using CFD and through-flow calculations[C]//ASME Turbo Expo 2016:Turbomachinery Technical Conference and Exposition. Seoul, South Korea:ASME, 2016.
[12] WU H, LI Q S, ZHOU S. Optimization of highly loaded fan rotor based on throughflow model[C]//ASME Turbo Expo 2007:Power for Land, Sea, and Air. Montreal, Canada:ASME, 2007.
[13] TAYLOR J V, MILLER R J. Competing 3D mechanisms in compressor flows[C]//ASME Turbo Expo 2015:Turbine Technical Conference and Exposition. Montreal, Canada:ASME, 2015.
[14] OKUI H, VERSTRAETE T, VAN DEN BRAEMBUSSCHE R A, et al. Three-dimensional design and optimization of a transonic rotor in axial flow compressors[J]. Journal of Turbomachinery, 2013, 135(3):031009.
[15] 李想. 高负荷轴流压气机的理论与试验研究[D]. 北京:清华大学, 2012. LI X. Theoretical and experimental investigation of highly-loaded axial flow compressors[D]. Beijing:Tsinghua University, 2012. (in Chinese)
[16] LIEBLEIN S. Incidence and deviation-angle correlations for compressor cascades[J]. Journal of Basic Engineering, 1960, 82(3):575-584.
[17] CARTER A D S. The low speed performance of related aerofoils in cascade:ARC Technical Report C. P. No. 29[R]. London:Her Majesty's Stationery Office, 1950.
[18] KOCH C C, SMITH JR L H. Loss sources and magnitudes in axial-flow compressors[J]. Journal of Engineering for Power, 1976, 98(3):411-424.
[19] MILLER G R, LEWIS JR G W, HARTMANN M J. Shock losses in transonic compressor blade rows[J]. Journal of Engineering for Power, 1961, 83(3):235-241.
[20] HOWELL A R. Design of axial compressors[J]. Proceedings of The Institution of Mechanical Engineers, 1945, 153(1):452-462.
[21] LAKSHMINARAYANA B, HORLOCK J H. Leakage and secondary flows in compressor cascades:R. & M. No. 3483[R]. London:Her Majesty's Stationery Office, 1967.
[22] GALLIMORE S J. Spanwise mixing in multistage axial flow compressors:Part II-Throughflow calculations including mixing[J]. Journal of Turbomachinery, 1986, 108(1):10-16.
[23] CREVELING H F, CARMODY R H. Axial flow compressor computer program for calculating off design performance (Program IV):NASA CR-72427[R]. Cleveland:NASA, 1968.
[24] KOCH C C. Stalling pressure rise capability of axial flow compressor stages[J]. Journal of Engineering for Power, 1981, 103(4):645-656.
[1] 张明, 王恩志, 刘耀儒, 齐文彪, 王德辉. 利用多项式混沌展开的结构可靠性分析[J]. 清华大学学报(自然科学版), 2022, 62(8): 1314-1320.
[2] 杨继锋, 姚蕊, 陈捷. 索牵引弹体装填机器人的尺寸优化设计[J]. 清华大学学报(自然科学版), 2021, 61(3): 217-223.
[3] 赵越, 强茂山, 王淏. EPC项目业主与承包商设计决策博弈[J]. 清华大学学报(自然科学版), 2021, 61(10): 1195-1201.
[4] 李东杰, 周伯豪, 梁骞, 兰旭东. 微型涡喷发动机燃烧室优化设计[J]. 清华大学学报(自然科学版), 2021, 61(10): 1212-1220.
[5] 薛春辉, 董玉杰. 自然循环熔盐球床堆中间换热器的优化设计[J]. 清华大学学报(自然科学版), 2018, 58(5): 445-449.
[6] 张铁山, 蒋晓华. 基于RB-IGBT的矩阵变换器中杂散电感的影响与优化[J]. 清华大学学报(自然科学版), 2017, 57(11): 1212-1219.
[7] 肖武, 王开锋, 姜晓滨, 贺高红. 遗传-模拟退火算法优化设计管壳式换热器[J]. 清华大学学报(自然科学版), 2016, 56(7): 728-734.
[8] 孙靖譞, 吕振华. 车辆受垂向强冲击时座椅安全带的防护效果比较分析与锚点位置优化[J]. 清华大学学报(自然科学版), 2016, 56(12): 1302-1311.
[9] 李培元, 顾春伟, 宋寅. 某MW级燃机低压离心压气机优化设计[J]. 清华大学学报(自然科学版), 2015, 55(10): 1110-1116.
[10] 韩俊, 温风波, 赵广播. 小展弦比涡轮叶片的弯曲优化设计[J]. 清华大学学报(自然科学版), 2014, 54(1): 102-108.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn