Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2023, Vol. 63 Issue (10): 1672-1685    DOI: 10.16511/j.cnki.qhdxxb.2022.25.023
  航空航天 本期目录 | 过刊浏览 | 高级检索 |
离心压气机性能影响机理研究及优化
闫慧慧, 李昊昱, 周伯豪, 张煜洲, 兰旭东
清华大学 航天航空学院, 航空发动机研究中心, 北京 100084
Research and optimization of the mechanism of centrifugal compressor
YAN Huihui, LI Haoyu, ZHOU Bohao, ZHANG Yuzhou, LAN Xudong
Aero Engine Research Center, School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(13597 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 压气机作为航空发动机的核心器件,对发动机的流量和功率影响显著。与轴流压气机相比,离心压气机具有结构简单、制造方便以及单级压比高等特点,十分适用于流量较小、总压比不高的小型涡轴发动机。该文基于Concepts NREC对离心压气机的叶轮和扩压器在规定工况下进行整体设计,并对离心压气机进行三维数值模拟,研究典型参数对离心压气机的影响,对初步设计模型参数进行优化,得到在设计工况下离心压气机的理想模型。研究表明:适当降低进口轮毂比、适当减小叶轮叶根进口角、合理选择叶顶间隙数值和叶轮出口相对宽度对提升压气机的效率和压比有利,优化后的离心压气机效率最高可达0.831,对应压比为8.771,工作裕度为18.44%,效率比初步设计的离心压气机提高了4.79%,压比提高了3.68%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
闫慧慧
李昊昱
周伯豪
张煜洲
兰旭东
关键词 涡轴发动机离心压气机整体设计数值模拟模型优化    
Abstract:[Objective] As the core component of an aeroengine, a compressor significantly affects the flow and power of the engine. Compared with the axial compressor, the centrifugal compressor is characterized by structural simplicity, manufacturing convenience, and high single-stage pressure ratio. Therefore, the compressor is highly suitable for turboshaft engines with low flow rates and low total pressure ratios. However, the piston engine plays a more important role in the market. Accelerating the research on centrifugal compressors used in small turboshaft engines is essential.[Methods] The design methods currently used in this project include experimentation, theoretical analysis, and numerical simulation. The numerical simulation method can eliminate the requirements of experimentation, overcome measurement difficulties, and eliminate the costs associated with the experiment process. Therefore, it is a relatively accurate and efficient method for flow and transfer analysis. In this paper, according to the theory of numerical simulation, the impeller and diffuser of the centrifugal compressor are designed under specified working conditions. A three-dimensional numerical simulation of the centrifugal compressor is conducted. The influence of typical parameters on the centrifugal compressors is studied, and the parameters of the preliminary design model are optimized to obtain the ideal model of the centrifugal compressor under the design conditions.[Results] The results of this study were obtained according to the static pressure distribution cloud map and the total pressure distribution cloud map of the meridional channel surface at the highest efficiency of the centrifugal compressor and design speed conditions. The efficiency of the optimized centrifugal compressor was 0.831; the corresponding pressure ratios was 8.771, which was 3.68% higher than that of the preliminary design; and the working margin was 18.44%, which was 4.79% higher than that of the preliminary design centrifugal compressor.[Conclusions] Through the numerical simulation results of an Eckardt impeller and comparison of the simulation with reference experimentation results, the reliability of the numerical simulation of a centrifugal compressor by FINE/Turbo is proved. The results demonstrate that the kinetic energy of the gas at the impeller outlet of the centrifugal compressor is basically transformed into pressure energy and that the supercharging effect is relatively good. The entropy increase mainly occurs at the tip clearance, where the leakage flow is relatively critical. The static pressure distribution of the B2B (blade to blade) section is compared with that of the meridional flow channel. The meridional section is a contraction channel along the flow direction caused by the large turning angle of the hub. Owing to the effect of centrifugal force, a low-speed zone is developed in the flow channel to form a separation zone and result in energy loss. The separation area can be reduced through the reduction of the inlet flow angle to improve the overall performance of the compressor. The research shows that properly reducing the inlet hub ratio and the inlet angle of the impeller blade root and reasonably selecting the blade tip clearance value and the relative width of the impeller outlet are beneficial to improving the efficiency and pressure ratio of the compressor.
Key wordsturboshaft engine    centrifugal compressor    overall design    numerical simulation    model optimization
收稿日期: 2022-07-13      出版日期: 2023-09-01
基金资助:某重油直升机研发项目(20174810037)
通讯作者: 兰旭东,副研究员,E-mail:lanxd@tsinghua.edu.cn     E-mail: lanxd@tsinghua.edu.cn
作者简介: 闫慧慧(1997-),女,硕士研究生。
引用本文:   
闫慧慧, 李昊昱, 周伯豪, 张煜洲, 兰旭东. 离心压气机性能影响机理研究及优化[J]. 清华大学学报(自然科学版), 2023, 63(10): 1672-1685.
YAN Huihui, LI Haoyu, ZHOU Bohao, ZHANG Yuzhou, LAN Xudong. Research and optimization of the mechanism of centrifugal compressor. Journal of Tsinghua University(Science and Technology), 2023, 63(10): 1672-1685.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2022.25.023  或          http://jst.tsinghuajournals.com/CN/Y2023/V63/I10/1672
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] 邹望之,郑新前.航空涡轴发动机发展趋势[J].航空动力学报, 2019, 34(12):2577-2588. ZOU W Z, ZHENG X Q. Development trends of aero turboshaft engines[J]. Journal of Aerospace Power, 2019, 34(12):2577-2588.(in Chinese)
[2] 闫慧慧,周伯豪,李豪,等.基于ANSYS的涡轴发动机压气机设计[J].清华大学学报(自然科学版), 2022, 62(3):549-554, 580. YAN H H, ZHOU B H, LI H, et al. Turboshaft engine compressor design using ANSYS[J]. Journal of Tsinghua University (Science and Technology), 2022, 62(3):549-554, 580.(in Chinese)
[3] 李伟.离心压气机设计及流动特性研究[D].太原:中北大学, 2021. LI W. Centrifugal compressor design and flow characte-risticsresearch[D]. Taiyuan:North University of China, 2021.(in Chinese)
[4] ACOSTA A J, BOWERMAN R D. An experimental study of centrifugal-pump impellers[J]. Journal of Fluids Engineering, 1957, 79(8):1821-1839.
[5] KRAIN H. Review of centrifugal compressor's application and development[J]. Journal of Turbomachinery, 2005, 127(1):25-34.
[6] 贾希诚,王正明,蔡睿贤.叶轮机械中叶顶间隙形态对气动性能影响的数值研究[J].工程热物理学报, 2001, 22(4):431-434. JIA X C, WANG Z M, CAI R X. Numerical investigation of the effects of tip gap shapes on aerodynamic performance in turbomachinery[J]. Journal of Engineering Thermophysics, 2001, 22(4):431-434.(in Chinese)
[7] 初雷哲,杜建一,黄典贵,等.离心压气机叶片前缘几何形状对性能的影响[J].工程热物理学报, 2008, 29(5):767-769. CHU L Z, DU J Y, HUANG D G, et al.Effect of the blade leading edge on the performance of a centrifugal compressor[J]. Journal of Engineering Thermophysics, 2008, 29(5):767-769.(in Chinese)
[8] ECKARDT D. Instantaneous measurements in the jet-wake discharge flow of a centrifugal compressor impeller[J]. Journal of Engineering for Gas Turbines and Power, 1974, 97(3):337-345.
[9] 《航空发动机设计手册》总编委员会.航空发动机设计手册:第8册压气机[M].北京:航空工业出版社, 2000. EDITOR-IN-CHIEF OF THE AERO ENGINE DESIGN MANUAL. Aero engine design manual:Vol. 8 Compressor[M]. Beijing:Aviation Industry Press, 2000.(in Chinese)
[10] 李庆阔,孙志刚,张超炜,等.高压比离心压气机叶片扩压器设计准则研究[J].工程热物理学报, 2021, 42(1):81-88. LI Q K, SUN Z G, ZHANG C W, et al. Study on design principles for vaned diffusers of high pressure ratio centrifugal compressors[J]. Chinese Journal of Engineering Thermophysics, 2021, 42(1):81-88.(in Chinese)
[11] LI C, JI C, FANG J. Effect of hub gap on expanding stability of centrifugal compressor[C]//IOP Conference Series:Materials Science and Engineering. Guangzhou:IOP Publishing, 2021:012033.
[12] KHALAFALLAH M G, SALEH H S, ALI S M, et al. CFD investigation of flow through a centrifugal compressor diffuser with splitter blades[J]. Journal of Engineering and Applied Science, 2021, 68:43.
[13] 赵会晶,席光,段亚飞,等.叶顶间隙对离心压气机性能和流动影响的实验研究[J].工程热物理学报, 2018, 39(7):1453-1460. ZHAO H J, XI G, DUAN Y F, et al. Experimental study of tip clearance effects on performance and flow field of a centrifugal compressor[J]. Journal of Engineering Thermophysics, 2018, 39(7):1453-1460.(in Chinese)
[14] 李潇宇,汪陈芳,王智鑫,等.蜗壳通道面积对离心压气机性能的影响[J].合肥工业大学学报(自然科学版), 2021, 44(5):590-594, 620. LI X Y, WANG C F, WANG Z X, et al. Effect of volute passage area on the performance of centrifugal compressor[J]. Journal of Hefei University of Technology (Natural Science), 2021, 44(5):590-594, 620.(in Chinese)
[15] 《航空发动机设计手册》总编委员会.航空发动机设计手册:第6册涡桨及涡轴发动机总体[M].北京:航空工业出版社, 2001. EDITOR-IN-CHIEF OF THE AERO ENGINE DESIGN MANUAL. Aero engine design manual:Vol. 6 Turboprop and turboshaft engines in general[M]. Beijing:Aviation Industry Press, 2001.(in Chinese)
[16] WANG R, WANG H L, YANG S H, et al. A study of stall condition of a centrifugal compressor based on CFD and experimental methods[J]. IOP Conference Series:Materials Science and Engineering, 2021, 1081:012052.
[1] 李玉, 王相钦, 闵敬春. 蛇形管内燃油变物性流动换热特性数值模拟[J]. 清华大学学报(自然科学版), 2024, 64(2): 337-345.
[2] 石云姣, 赵宁波, 郑洪涛. 进气畸变对重型燃气轮机燃压缸流动特性影响[J]. 清华大学学报(自然科学版), 2024, 64(1): 90-98.
[3] 李聪健, 高航, 刘奕. 基于数值模拟和机器学习的风场快速重构方法[J]. 清华大学学报(自然科学版), 2023, 63(6): 882-887.
[4] 钟茂华, 胡鹏, 陈俊沣, 程辉航, 吴乐, 魏旋. 顶部多点竖向排烟下地铁隧道烟气控制研究[J]. 清华大学学报(自然科学版), 2023, 63(5): 754-764.
[5] 孙继昊, 罗绍文, 赵宁波, 杨慧玲, 郑洪涛. 甲烷/空气燃烧NOx排放数值模型对比[J]. 清华大学学报(自然科学版), 2023, 63(4): 623-632.
[6] 孙逸凡, 朱炜, 吴玉新, 祁海鹰. Gao-Yong湍流模型对边界层转捩的适用性研究[J]. 清华大学学报(自然科学版), 2023, 63(4): 642-648.
[7] 高畅, 李岩军, 余莉, 聂舜臣. 帆片结构张满度变化对环帆伞气动性能的影响[J]. 清华大学学报(自然科学版), 2023, 63(3): 322-329.
[8] 陈冠华, 陈雅倩, 周宁, 贾贺, 荣伟, 薛晓鹏. 具有横向运动能力的圆形伞的设计[J]. 清华大学学报(自然科学版), 2023, 63(3): 338-347.
[9] 高群翔, 孙琦, 彭威, 张平, 赵钢. 碘硫循环制氢中硫酸分解的全过程模拟方法[J]. 清华大学学报(自然科学版), 2023, 63(1): 24-32.
[10] 史琳, 许强辉. 稠油注空气开发技术的基础研究与应用[J]. 清华大学学报(自然科学版), 2022, 62(4): 722-734.
[11] 何鑫, 薛瑞, 郑星, 张骞, 龚建良. 边界层燃烧在超燃冲压发动机内的摩擦减阻特性[J]. 清华大学学报(自然科学版), 2022, 62(3): 562-572.
[12] 闫慧慧, 周伯豪, 李豪, 张煜洲, 兰旭东. 基于ANSYS的涡轴发动机压气机设计[J]. 清华大学学报(自然科学版), 2022, 62(3): 549-554,580.
[13] 张旨晗, 刘辉, 吕振雷, 侯岩松, 孙立风, 王石, 吴朝霞, 刘亚强. 大动物SPECT系统设计与数值模拟[J]. 清华大学学报(自然科学版), 2022, 62(12): 1875-1883.
[14] 韩亚东, 谭磊, 刘亚斌. 基于可控载荷的混流泵叶轮设计及试验研究[J]. 清华大学学报(自然科学版), 2022, 62(12): 1930-1937.
[15] 陈猛, 陈昭, 刘荣正, 刘兵, 邵友林, 唐亚平, 刘马林. 流化床-化学气相沉积颗粒包覆过程数值模拟[J]. 清华大学学报(自然科学版), 2022, 62(10): 1645-1659.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn