Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (8): 1302-1313    DOI: 10.16511/j.cnki.qhdxxb.2022.25.034
  智能预测反馈 本期目录 | 过刊浏览 | 高级检索 |
基于IAGA-BP算法的高拱坝-坝基力学参数反演分析
庄文宇1, 张如九1, 徐建军2, 殷亮2, 魏海宁2, 刘耀儒1
1. 清华大学 水沙科学与水利水电工程国家重点实验室, 北京 100084;
2. 中国电建集团华东勘测设计研究院有限公司, 杭州 310014
Inversion analysis to determine the mechanical parameters of a high arch dam and its foundation based on an IAGA-BP algorithm
ZHUANG Wenyu1, ZHANG Rujiu1, XU Jianjun2, YIN Liang2, WEI Haining2, LIU Yaoru1
1. State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China;
2. PowerChina Huadong Engineering Corporation Limited, Hangzhou 310014, China
全文: PDF(12253 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 基于监测资料对坝体和坝基的力学参数进行反演,对大坝的安全评价具有重要意义。该文提出了基于改进自适应遗传算法和BP神经网络(IAGA-BP)的力学参数反演分析方法,采用考虑权重的绝对百分误差作为目标函数,可以针对多点监测资料和非线性数值仿真进行力学参数反演。基于正常蓄水位下拱坝坝体、坝基及拱肩槽边坡等25个测点的实测变形,对坝体混凝土、基础岩体及结构面的多个材料分区的11个关键力学参数进行了反演分析。结果表明,反演值和实测值吻合较好,将材料参数作为输入层、测点变形作为输出层有效避免了反演值的“失真”问题。针对高拱坝-坝基系统的力学参数反演,分析了神经网络拓扑结构、目标函数、训练样本数量等对反演结果的影响。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
庄文宇
张如九
徐建军
殷亮
魏海宁
刘耀儒
关键词 高拱坝IAGABP神经网络参数反演    
Abstract:Using an inversion analysis to determine the mechanical parameters of a dam and its foundation from monitoring data is of great significance to safety evaluation. An inversion analysis method was developed based on an adaptive genetic algorithm and a BP neural network. The analysis used the weighted absolute percentage error as the objective function to determine the mechanical parameters from multi-point monitoring data and nonlinear numerical simulations. Deformation data from 25 measurement points was used to determine 11 key mechanical parameters for the dam concrete, foundation rock mass and structural plane. The results show that the inversion values are in good agreement with measured data. The inversion accuracy is improved by using the material parameters as the input layer and the deformation as the output layer. The effects of the neural network topology, objective function and the number of training samples on the inversion results was analyzed.
Key wordshigh arch dam    IAGA    BP neural network    parameter inversion
收稿日期: 2021-10-27      出版日期: 2022-03-31
基金资助:国家自然科学基金资助项目(41961134032,51739006);水沙科学与水利水电工程国家重点实验室项目(2019-KY-03)
通讯作者: 刘耀儒,教授,E-mail:liuyaoru@tsinghua.edu.cn      E-mail: liuyaoru@tsinghua.edu.cn
作者简介: 庄文宇(1998—),男,博士研究生。
引用本文:   
庄文宇, 张如九, 徐建军, 殷亮, 魏海宁, 刘耀儒. 基于IAGA-BP算法的高拱坝-坝基力学参数反演分析[J]. 清华大学学报(自然科学版), 2022, 62(8): 1302-1313.
ZHUANG Wenyu, ZHANG Rujiu, XU Jianjun, YIN Liang, WEI Haining, LIU Yaoru. Inversion analysis to determine the mechanical parameters of a high arch dam and its foundation based on an IAGA-BP algorithm. Journal of Tsinghua University(Science and Technology), 2022, 62(8): 1302-1313.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2022.25.034  或          http://jst.tsinghuajournals.com/CN/Y2022/V62/I8/1302
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] 程井, 孟凡轩, 李宗樾. 基于实测资料的混凝土拱坝反馈分析及安全度评价[J]. 武汉大学学报(工学版), 2019, 52(4):297-302, 310. CHENG J, MENG F X, LI Z Y. Feedback analysis and safety degree evaluation of concrete arch dam based on measured data[J]. Engineering Journal of Wuhan University, 2019, 52(4):297-302, 310. (in Chinese)
[2] 刘毅, 高阳秋晔, 张国新, 等. 锦屏一级特高拱坝工作性态仿真与反演分析[J]. 水利水电技术, 2017, 48(1):46-51. LIU Y, GAOYANG Q Y, ZHANG G X, et al. Simulation and inversion analysis on working behavior of super-high arch dam of Jinping I Hydropower Station[J]. Water Resources and Hydropower Engineering, 2017, 48(1):46-51. (in Chinese)
[3] 胡清义, 朱喜, 田功臣. 构皮滩拱坝坝体与坝基变形模量反演分析[J]. 武汉大学学报(工学版), 2021, 54(9):801-809. HU Q Y, ZHU X, TIAN G C. Inversion analysis of deformation modulus of Goupitan high arch dam and its foundation rock[J]. Engineering Journal of Wuhan University, 2021, 54(9):801-809. (in Chinese)
[4] 何柱, 刘耀儒, 杨强, 等. 基于位移反分析的小湾拱坝稳定性评价[J]. 岩石力学与工程学报, 2013, 32(11):2242-2249. HE Z, LIU Y R, YANG Q, et al. Research on stability estimation of Xiaowan arch dam based on displacement back analysis[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(11):2242-2249. (in Chinese)
[5] BUKENYA P, MOYO P, BEUSHAUSEN H, et al. Health monitoring of concrete dams:A literature review[J]. Journal of Civil Structural Health Monitoring, 2014, 4(4):235-244.
[6] 何柱, 刘耀儒, 杨强, 等. 溪洛渡拱坝谷幅变形机制及变形反演和长期稳定性分析[J]. 岩石力学与工程学报, 2018, 37(S2):4198-4206. HE Z, LIU Y R, YANG Q, et al. Mechanism of valley deformation of Xiluodu arch dam and back analysis and long-term stabilyty analysis[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(S2):4198-4206. (in Chinese)
[7] 程立, 刘耀儒, 潘元炜, 等. 基于蓄水期反演的锦屏一级拱坝极限承载力分析[J]. 岩土力学, 2016, 37(5):1388-1398. CHENG L, LIU Y R, PAN Y W, et al. Research on ultimate bearing capacity of Jinping-I Arch Dam based on impoundment period inversion[J]. Rock and Soil Mechanics, 2016, 37(5):1388-1398. (in Chinese)
[8] 杨剑, 王进廷, 王吉焕, 等. 二滩拱坝及坝基材料参数反馈分析[J]. 水力发电学报, 2008, 27(2):78-83. YANG J, WANG J T, WANG J H, et al. Feedback analysis of material parameters of Ertan arch dam and its foundation rock[J]. Journal of Hydroelectric Engineering, 2008, 27(2):78-83. (in Chinese)
[9] 梁国贺, 胡昱, 樊启祥, 等. 溪洛渡高拱坝蓄水期谷幅变形特性与影响因素分析[J]. 水力发电学报, 2016, 35(9):101-110. LIANG G H, HU Y, FAN Q X, et al. Analysis on valley deformation of Xiluodu high arch dam during impoundment and its influencing factors[J]. Journal of Hydroelectric Engineering, 2016, 35(9):101-110. (in Chinese)
[10] 赵英华, 李同春, 程井, 等. 基于统计模型及有限元法的重力坝变形模量反演[J]. 水电能源科学, 2015, 33(12):96-100. ZHAO Y H, LI T C, CHENG J, et al. Inverse analysis of deformation modulus of gravity dam based on statistic model and finite element method[J]. Water Resources and Power, 2015, 33(12):96-100. (in Chinese)
[11] 冯帆, 邱信蛟, 张国新, 等. 基于施工期变形监测的特高拱坝力学参数反演研究[J]. 岩土力学, 2017, 38(1):237-246. FENG F, QIU X J, ZHANG G X, et al. Inversion of mechanical parameters of super-high arch dam based on deformation monitoring during construction period[J]. Rock and Soil Mechanics, 2017, 38(1):237-246. (in Chinese)
[12] 李宗樾, 程井, 张枝阳, 等. 基于有限元法的高拱坝分区变形模量反演分析[J]. 三峡大学学报(自然科学版), 2018, 40(4):1-5. LI Z Y, CHENG J, ZHANG Z Y, et al. Parameter inversion of regional deformation modulus for high arch dam using FEM[J]. Journal of China Three Gorges University (Natural Sciences), 2018, 40(4):1-5. (in Chinese)
[13] 黄耀英, 黄光明, 吴中如, 等. 基于变形监测资料的混凝土坝时变参数优化反演[J]. 岩石力学与工程学报, 2007, 26(S1):2941-2945. HUANG Y Y, HUANG G M, WU Z R, et al. Optimization inversion of concrete dam's time-dependent parameters based on deformation monitoring data[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S1):2941-2945. (in Chinese)
[14] 刘福深, 刘耀儒, 杨强, 等. 基于改进遗传算法的拱坝位移反分析[J]. 岩石力学与工程学报, 2005, 24(23):4341-4345. LIU F S, LIU Y R, YANG Q, et al. Displacement back analysis of arch dams based on improved genetic algorithm[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(23):4341-4345. (in Chinese)
[15] 刘耀儒, 杨强, 刘福深, 等. 基于并行改进遗传算法的拱坝位移反分析[J]. 清华大学学报(自然科学版), 2006, 46(9):1542-1545, 1550. LIU Y R, YANG Q, LIU F S, et al. Inverse analyses of arch dam displacements using improved parallel genetic algorithm[J]. Journal of Tsinghua University (Science & Technology), 2006, 46(9):1542-1545, 1550. (in Chinese)
[16] YAO F H, GUAN S H, YANG H, et al. Long-term deformation analysis of Shuibuya concrete face rockfill dam based on response surface method and improved genetic algorithm[J]. Water Science and Engineering, 2019, 12(3):196-204.
[17] ZHOU W, LI S L, MA G, et al. Parameters inversion of high central core rockfill dams based on a novel genetic algorithm[J]. Science China Technological Sciences, 2016, 59(5):783-794.
[18] ZHU Y, CHI S C. The application of MsPSO in the rockfill parameter inversion of CFRD[J]. Mathematical Problems in Engineering, 2016, 2016:1096967.
[19] CHEN Y J, GU C S, WU B B, et al. Inversion modeling of dam-zoning elasticity modulus for heightened concrete dam using ICS-IPSO algorithm[J]. Mathematical Problems in Engineering, 2019, 2019:9328326.
[20] 李火坤, 邓冰梅, 魏博文, 等. 基于有限测点的高拱坝原型整体动位移场反演研究[J]. 振动与冲击, 2016, 35(10):1-8. LI H K, DENG B M, WEI B W, et al. Inversion of the whole dynamic displacement field of a prototype high arch dam based on limited points measurement[J]. Journal of Vibration and Shock, 2016, 35(10):1-8. (in Chinese)
[21] CHEN B, FU X, GUO X Y, et al. Zoning elastic modulus inversion for high arch dams based on the PSOGSA-SVM method[J]. Advances in Civil Engineering, 2019, 2019:7936513.
[22] SUN Y, JIANG Q H, YIN T, et al. A back-analysis method using an intelligent multi-objective optimization for predicting slope deformation induced by excavation[J]. Engineering Geology, 2018, 239:214-228.
[23] 陈闯, CHELLALI R, 邢尹. 改进遗传算法优化BP神经网络的语音情感识别[J]. 计算机应用研究, 2019, 36(2):344-346, 361. CHEN C, CHELLALI R, XING Y. Speech emotion recognition based on improved genetic algorithm optimized BP neural network[J]. Application Research of Computers, 2019, 36(2):344-346, 361. (in Chinese)
[24] SRINIVAS M, PATNAIK L M. Adaptive probabilities of crossover and mutation in genetic algorithms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1994, 24(4):656-667.
[25] 苏崇宇, 汪毓铎. 基于改进的自适应遗传算法优化BP神经网络[J]. 工业控制计算机, 2019, 32(1):67-69. SU C Y, WANG Y D. BP neural network optimized by improved adaptive genetic algorithm computer engineering and applications[J]. Industrial Control Computer, 2019, 32(1):67-69. (in Chinese)
[26] 李步遥, 司马军. 基于MEC-BP神经网络的基坑水平位移反演分析[J]. 铁道科学与工程学报, 2021, 18(7):1764-1772. LI B Y, SIMA J. Horizontal displacement back-analysis for deep excavation using MEC-BP neural network[J]. Journal of Railway Science and Engineering, 2021, 18(7):1764-1772. (in Chinese)
[27] LU J S, XIE W D, ZHOU H B. Combined fitness function based particle swarm optimization algorithm for system identification[J]. Computers & Industrial Engineering, 2016, 95:122-134.
[28] LIU Y R, WU Z S, YANG Q, et al. Dynamic stability evaluation of underground tunnels based on deformation reinforcement theory[J]. Advances in Engineering Software, 2018, 124:97-108.
[29] 侯少康, 刘耀儒, 张凯. 基于IPSO-BP混合模型的TBM掘进参数预测[J]. 岩石力学与工程学报, 2020, 39(8):1648-1657. HOU S K, LIU Y R, ZHANG K. Prediction of TBM tunnelling parameters based on IPSO-BP hybrid model[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(8):1648-1657. (in Chinese)
[1] 王兴旺, 刘耀儒, 吕帅, 杨强. 高拱坝蓄水期库岸变形与水库诱发地震相关性研究[J]. 清华大学学报(自然科学版), 2022, 62(8): 1341-1350.
[2] 谭尧升, 陈文夫, 林恩德, 林鹏, 周天刚, 周孟夏, 刘春风, 裴磊, 梁程, 尚超, 杨鹏博, 姚孟迪, 李向前, 李俊平. 特高拱坝施工期多维信息模型研究与实践[J]. 清华大学学报(自然科学版), 2022, 62(12): 1884-1895.
[3] 谭尧升, 樊启祥, 汪志林, 陈文夫, 郭增光, 林恩德, 林鹏, 周天刚, 周孟夏, 刘春风, 龚攀, 裴磊. 白鹤滩特高拱坝智能建造技术与应用实践[J]. 清华大学学报(自然科学版), 2021, 61(7): 694-704.
[4] 刘有志, 张国新, 谭尧升, 刘春风, 龚攀, 裴磊. 仿真大坝建设关键技术与实践应用[J]. 清华大学学报(自然科学版), 2021, 61(7): 714-723.
[5] 乔雨, 杨宁, 谭鹏, 彭浩洋, 吴卫, 周大建, 王潇楠. 大体积混凝土红外测温影响因素研究与工程应用[J]. 清华大学学报(自然科学版), 2021, 61(7): 730-737.
[6] 王峰, 周宜红, 赵春菊, 周华维, 陈文夫, 谭尧升, 梁志鹏, 潘志国, 王放. 基于混合粒子群算法的特高拱坝不同材料热学参数反演分析[J]. 清华大学学报(自然科学版), 2021, 61(7): 747-755.
[7] 王飞, 刘金飞, 尹习双, 谭尧升, 周天刚, 杨支跃, 冯博, 杨小龙. 高拱坝智能进度仿真理论与关键技术[J]. 清华大学学报(自然科学版), 2021, 61(7): 756-767.
[8] 徐建江, 陈文夫, 谭尧升, 高世奎, 周天刚, 周孟夏, 刘春风, 梁程, 李向前. 特高拱坝混凝土运输智能化关键技术与应用[J]. 清华大学学报(自然科学版), 2021, 61(7): 768-776.
[9] 吕征, 刘耀儒, 程立, 杨强. 高拱坝河床基岩深槽处理方案[J]. 清华大学学报(自然科学版), 2019, 59(5): 373-379.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn