Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (8): 1292-1301    DOI: 10.16511/j.cnki.qhdxxb.2022.25.035
  智能施工 本期目录 | 过刊浏览 | 高级检索 |
深埋引水隧洞极硬岩TBM掘进及辅助破岩技术
刘晓丽1, 孙欢2, 董勤喜2, 熊炎林3, KUMAR Nawnit1, 苏岩4, 周建军5,6
1. 清华大学 水沙科学与水利水电工程国家重点实验室, 北京 100084;
2. 海南大学 土木建筑工程学院, 海口 570228;
3. 中铁隧道局集团有限公司勘察设计研究院, 广州 511400;
4. 陕西省引汉济渭工程建设公司, 西安 710010;
5. 盾构及掘进技术国家重点实验室, 郑州 450001;
6. 中铁隧道局集团有限公司, 广州 511458
Extremely hard rock mass excavation using rock breakdown methods to assist TBM in a deep, long diversion tunnel in the Qinling Mountains
LIU Xiaoli1, SUN Huan2, DONG Qinxi2, XIONG Yanlin3, KUMAR Nawnit1, SU Yan4, ZHOU Jianjun5,6
1. State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China;
2. School of Civil Engineering and Architecture, Hainan University, Haikou 570228, China;
3. Survey Design & Research Institute, China Railway Tunnel Group Co., Ltd., Guangzhou 511400, China;
4. Hanjiang to Weihe River Valley Water Diversion Project Construction Co. LTD., Shaanxi Province, Xi'an 710010, China;
5. State Key Laboratory of Shield Machine and Boring Technology, Zhengzhou 450001, China;
6. China Railway Tunnel Group Co., Ltd., Guangzhou 511458, China
全文: PDF(14058 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 秦岭深埋长距离引水隧洞极硬岩强度达到300 MPa以上,已成为制约隧洞掘进机(tunneling boring machine,TBM)高效施工的主要难题。针对秦岭引水隧洞极硬岩掘进施工问题,该文提出了基于TBM掘进隧洞的热能-机械耦合破岩方法,开展了有关微波、等离子体、火焰炬、水射流和钻孔劈裂的破岩试验以及数值计算和搭载设计,提出了5类辅助TBM破岩方法的适用性和搭载设计。研究结果表明:秦岭深埋引水隧洞岭南TBM掌子面岩体高含量石英吸收微波能力差、黑色极性矿物颗粒小,岩体微波劣化效应不显著,必须通过钻孔植入黑色极性矿物,增强岩体微波劣化效应;等离子体破岩方法采用超高电场密度能够产生显著的电力作用和热能破岩效果,可以将刀盘滚刀作为电极进行设计;火焰炬切割技术简单、易操作,但必须采取人工降温和热屏蔽措施;超高压水射流和钻孔超强劈裂破岩方法适用于掌子面岩体强度大于400 MPa,TBM掘进每日进尺小于1 m的工况。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘晓丽
孙欢
董勤喜
熊炎林
KUMAR Nawnit
苏岩
周建军
关键词 深埋引水隧洞TBM掘进极硬岩热能-机械破岩    
Abstract:Extremely hard rock with tensile strengths of more than 300 MPa were encountered in a deep, long diversion tunnel in the Qinling Mountains which significantly slowed the TBM excavation. This paper presents a coupled rock breakdown method using thermal energy and mechanical methods for extremely hard rock mass excavation without changing the TBM system. Attempts to break the extremely hard rocks included using microwaves supplemented by numerical simulations of using plasma jets to break the rocks. The present study analyzed the applicability of five kinds of rock breakdown methods. The results show that the rocks are extremely hard due to small black, polar mineral particles and the high quartz content in the rocks. The rocks could be weakened by injecting black, polar substances to improve the effect of microwave irradiation on the rocks. In addition, high voltage plasma jets were found to induce electrical-mechanical effects and thermal melting. The hob could be designed as electrodes. Flame cutting was easily used on the excavation face, but needs a thermal shield and cooling time after the cutting. Super high pressure water jets were also useful, but needed pressures of 400 MPa to cut the high tensile strength rock with excavation distances of less than 1.0 m per day.
Key wordsdeep-long division tunnels    TBM excavation    extremely hard rock    thermal-mechanical tunneling methods
收稿日期: 2021-10-15      出版日期: 2022-03-31
基金资助:国家自然科学基金项目(52079068,41941019,52109120);水沙科学与水利水电工程国家重点实验室重大创新项目(2019-KY-03,2021-KY-04)
作者简介: 刘晓丽(1978—),男,副教授。E-mail:xiaoli.liu@tsinghua.edu.cn
引用本文:   
刘晓丽, 孙欢, 董勤喜, 熊炎林, KUMAR Nawnit, 苏岩, 周建军. 深埋引水隧洞极硬岩TBM掘进及辅助破岩技术[J]. 清华大学学报(自然科学版), 2022, 62(8): 1292-1301.
LIU Xiaoli, SUN Huan, DONG Qinxi, XIONG Yanlin, KUMAR Nawnit, SU Yan, ZHOU Jianjun. Extremely hard rock mass excavation using rock breakdown methods to assist TBM in a deep, long diversion tunnel in the Qinling Mountains. Journal of Tsinghua University(Science and Technology), 2022, 62(8): 1292-1301.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2022.25.035  或          http://jst.tsinghuajournals.com/CN/Y2022/V62/I8/1292
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] 钱七虎. 地下工程建设安全面临的挑战与对策[J]. 岩石力学与工程学报, 2012, 31(10):1945-1956. QIAN Q H. Challenges faced by underground projects construction safety and countermeasures[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(10):1945-1956. (in Chinese)
[2] 冯夏庭, 江权, 苏国韶. 高应力下硬岩地下工程的稳定性智能分析与动态优化[J]. 岩石力学与工程学报, 2008, 27(7):1341-1352. FENG X T, JIANG Q, SU G S. Integrated intelligent stability analysis and dynamic optimization of underground engineering in hard rock with high geostress[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(7):1341-1352. (in Chinese)
[3] 赵力, 李立民, 张忠东, 等. 秦岭隧洞深部岩石力学性能及声发射特征研究[J]. 人民黄河, 2019, 41(2):122-125, 142. ZHAO L, LI L M, ZHANG Z D, et al. Study on mechanical properties and acoustic emission characteristics of deep earth rocks in Qinling Tunnel[J]. Yellow River, 2019, 41(2):122-125, 142. (in Chinese)
[4] 党建涛, 刘福生, 王红霞, 等. 引汉济渭工程秦岭隧洞TBM的刀具选型试验[J]. 水利水电技术, 2017, 48(12):63-69, 94. DANG J T, LIU F S, WANG H X, et al. Experiment on selection of TBM cutter for construction of Qinling Tunnel for Hanjiang-to-Weihe river valley water diversion project[J]. Water Resources and Hydropower Engineering, 2017, 48(12):63-69, 94. (in Chinese)
[5] 周春华, 尹健民, 丁秀丽, 等. 秦岭深埋引水隧洞地应力综合测量及区域应力场分布规律研究[J]. 岩石力学与工程学报, 2012, 31(S1):2956-2964. ZHOU C H, YIN J M, DING X L, et al. Complex measurements of geo-stress in deep diversion tunnel and research on distribution law of regional stress field in Qinling mountain[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(S1):2956-2964. (in Chinese)
[6] 张新辉, 焦萱, 王瑞芳, 等. 秦岭北缘某深埋引水隧洞应力场特征研究[J]. 地下空间与工程学报, 2017, 13(2):410-415. ZHANG X H, JIAO X, WANG R F, et al. Study on stress field characteristics of a deep buried diversion tunnel in the northern margin of Qinling[J]. Chinese Journal of Underground Space and Engineering, 2017, 13(2):410-415. (in Chinese)
[7] 谭青, 易念恩, 夏毅敏, 等. TBM滚刀破岩动态特性与最优刀间距研究[J]. 岩石力学与工程学报, 2012, 31(12):2453-2464. TAN Q, YI N E, XIA Y M, et al. Research on rock dynamic fragmentation characteristics by TBM cutters and cutter spacing optimization[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(12):2453-2464. (in Chinese)
[8] 郭卫社, 游永锋, 高攀, 等. 深圳春风隧道主要施工技术难题与解决方案[J]. 隧道建设(中英文), 2019, 39(7):1165-1174. GUO W S, YOU Y F, GAO P, et al. Main construction technical difficulties and solutions of Shenzhen Chunfeng Tunnel[J]. Tunnel Construction, 2019, 39(7):1165-1174. (in Chinese)
[9] 钱七虎. 隧道工程建设地质预报及信息化技术的主要进展及发展方向[J]. 隧道建设, 2017, 37(3):251-263. QIAN Q H. Main developments and directions of geological prediction and informatized technology of tunnel construction[J]. Tunnel Construction, 2017, 37(3):251-263. (in Chinese)
[10] 马洪素, 龚秋明, 王驹, 等. 围压对TBM滚刀破岩影响规律的线性切割试验研究[J]. 岩石力学与工程学报, 2016, 35(2):346-355. MA H S, GONG Q M, WANG J, et al. Linear cutting tests on effect of confining stress on rock fragmentation by TBM cutter[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(2):346-355. (in Chinese)
[11] 杨媛媛, 黄宏伟. 围岩分类在TBM滚刀寿命预测中的应用[J]. 地下空间与工程学报, 2005, 1(5):721-724. YANG Y Y, HUANG H W. Application of rock mass classification in cutter life prediction of TBM[J]. Chinese Journal of Underground Space and Engineering, 2005, 1(5):721-724. (in Chinese)
[12] 秦银平, 张竹清, 孙振川, 等. 基于现场试验的TBM滚刀磨损分析及预测[J]. 隧道建设(中英文), 2019, 39(11):1914-1921. QIN Y P, ZHANG Z Q, SUN Z C, et al. Analysis and prediction of TBM disc cutter wear based on field test[J]. Tunnel Construction, 2019, 39(11):1914-1921. (in Chinese)
[13] ZHENG Y L, ZHANG Q B, ZHAO J. Effect of microwave treatment on thermal and ultrasonic properties of gabbro[J]. Applied Thermal Engineering, 2017, 127:359-369.
[14] SANTAMARIN J C. Rock excavation with microwaves:A literature review[M]//KULHAWY F H. Foundation Engineering Conference. Evanston, Illinois, USA:ASCE, 1989:459-473.
[15] HASSANI F, NEKOOVAGHT P. The development of microwave assisted machineries to break hard rocks[C]//Proceedings of the 28th International Symposium on Automation and Robotics in Construction. Seoul, South Korea, 2011:678-684.
[16] IKKURTHI V R, TAHILIANI K, CHATURVEDI S. Simulation of crack propagation in rock in plasma blasting technology[J]. Shock Waves, 2002, 12(2):145-152.
[17] 孙欢, 刘晓丽, 王恩志, 等. 岩石破裂过程中裂隙流体X射线造影试验及应用[J]. 清华大学学报(自然科学版), 2021, 61(8):778-791. SUN H, LIU X L, WANG E Z, et al. X-ray radiography for visualization of fissure fluid flows during rock failures[J]. Journal of Tsinghua University (Science and Technology), 2021, 61(8):778-791. (in Chinese)
[18] 侯少康, 刘耀儒. 双护盾TBM掘进数值仿真及护盾卡机控制因素影响分析[J]. 清华大学学报(自然科学版), 2021, 61(8):809-817. HOU S K, LIU Y R. Numerical simulations of double-shield TBM tunneling for analyzing shield jamming control factors[J]. Journal of Tsinghua University (Science and Technology), 2021, 61(8):809-817. (in Chinese)
[19] LIU X L, WANG F, HUANG J, et al. Grout diffusion in silty fine sand stratum with high groundwater level for tunnel construction[J]. Tunnelling and Underground Space Technology, 2019, 93:103051.
[20] LIU X L, HAN G F, WANG E Z, et al. Multiscale hierarchical analysis of rock mass and prediction of its mechanical and hydraulic properties[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2018, 10(4):694-702.
[21] TANG Z L, LIU X L, XU Q J, et al. Stability evaluation of deep-buried TBM construction tunnel based on microseismic monitoring technology[J]. Tunnelling and Underground Space Technology, 2018, 81:512-524.
[22] 汤志立, 刘晓丽, 李超毅, 等. 深埋TBM隧道施工微震监测规律[J]. 清华大学学报(自然科学版), 2018, 58(5):461-468. TANG Z L, LIU X L, LI C Y, et al. Microseismic characteristic analysis in deep TBM construction tunnels[J]. Journal of Tsinghua University (Science and Technology), 2018, 58(5):461-468. (in Chinese)
[23] XU C, LIU X L, WANG E Z, et al. Rockburst prediction and classification based on the ideal-point method of information theory[J]. Tunnelling and Underground Space Technology, 2018, 81:382-390.
[24] XU C, LIU X L, WANG E Z, et al. Prediction of tunnel boring machine operating parameters using various machine learning algorithms[J]. Tunnelling and Underground Space Technology, 2021, 109:103699.
[25] XU C, LIU X L, WANG E Z, et al. Calibration of the microparameters of rock specimens by using various machine learning algorithms[J]. International Journal of Geomechanics, 2021, 21(5):04021060.
[26] ZHANG Z Y, LIU X L, WEN X D. Enhance absorption based on the resonance of localized surface plasmon modes in a metamaterial absorber[J]. Journal of Infrared and Millimeter Waves, 2018, 37(5):533-539.
[27] ZHANG Z Z, LIU X L, CHENG L J, et al. A rheological constitutive model for damaged zone evolution of a tunnel considering strain hardening and softening[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2020, 6(4):56.
[28] LÜ Q F, WAGN E Z, LIU X L, et al. Determining the intrinsic permeability of tight porous media based on bivelocity hydrodynetics[J]. Microfluidics and Nanofluidics, 2014, 16(5):841-848.
[29] LÜ Q F, LIU X L, WAGN E Z, et al. Analytical solution to predicting gaseous mass flow rates of microchannels in a wide range of Knudsen numbers[J]. Physical Review E, 2013, 88(1):013007.
[30] MAN K, LIU X L, WANG J, et al. Blasting energy analysis of the different cutting methods[J]. Shock and Vibration, 2018, 2018:9419018.
[31] MAN K, LIU X L, SONG Z F. A new excavation technology of blasting combined with TBM[J]. Geomatics, Natural Hazards and Risk, 2021, 12(1):3205-3223. DOI:10.1080/19475705.2021.1998231.
[32] MAN K, LIU X L, SONG Z F. Rock blasting vibration velocity and excavation damaged zone for the high-level radioactive waste geological disposal[J]. Geomatics, Natural Hazards and Risk, 2021, 12(1):2590-2606.
[33] 满轲, 刘晓丽, 宋志飞, 等. 岩石静态与动态断裂韧性的宏细观试验[J]. 清华大学学报(自然科学版), 2021, 61(8):799-808. MAN K, LIU X L, SONG Z F, et al. Macro-micro experimental study of rock static and dynamic fracture toughness[J]. Journal of Tsinghua University (Science and Technology), 2021, 61(8):799-808. (in Chinese)
[34] 张国伟, 孟庆任, 于在平, 等. 秦岭造山带的造山过程及其动力学特征[J]. 中国科学(D辑), 1996, 26(3):193-200. ZHANG G W, MENG Q R, YU Z P, et al. Orogenic process and dynamic characteristics of Qinling orogeny belt[J]. Science in China (Series D), 1996, 26(3):193-200. (in Chinese)
[35] 孙振川, 杨延栋, 陈馈, 等. 引汉济渭岭南TBM工程二长花岗岩地层滚刀磨损研究[J]. 隧道建设, 2017, 37(9):1167-1172. SUN Z C, YANG Y D, CHEN K, et al. Study of wear of disc cutter boring in monzonitic granite strata of Lingnan TBM section of Hanjiang River-Weihe River water conveyance project[J]. Tunnel Construction, 2017, 37(9):1167-1172. (in Chinese)
[36] O'DWYER J J. Theory of dielectric breakdown in solids[J]. Journal of the Electrochemical Society, 1969, 116(2):239-242.
[37] 李昌平, 契霍特金V F, 段隆臣. 电脉冲破岩钻进技术研究进展[J]. 地质科技情报, 2018, 37(6):298-304. LI C P, CHIKHOTKIN V F, DUAN L C. Research progress of electro pulse boring rock breaking technology[J]. Bulletin of Geological Science and Technology, 2018, 37(6):298-304. (in Chinese)
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn