Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2023, Vol. 63 Issue (3): 294-301    DOI: 10.16511/j.cnki.qhdxxb.2022.26.003
  论文 本期目录 | 过刊浏览 | 高级检索 |
航天降落伞撕裂带测试装置及其动态索力响应特性
李东兴1, 侯森浩1, 孙海宁1, 黎帆1, 唐晓强1,2,3
1. 清华大学 机械工程系, 北京 100084;
2. 清华大学 摩擦学国家重点实验室, 北京 100084;
3. 清华大学 精密超精密制造装备及控制北京市重点实验室, 北京 100084
Test equipment for a parachute tear-band to measure the cable force dynamics
LI Dongxing1, HOU Senhao1, SUN Haining1, LI Fan1, TANG Xiaoqiang1,2,3
1. Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China;
2. State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China;
3. Beijing Key Lab of Precision/Ultra-Precision Manufacturing Equipment and Control, Beijing 100084, China
全文: PDF(5385 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 该文提出一种航天降落伞撕裂带测试装置,用于测试撕裂带工作性能。基于测试装置,研究绳索在高速冲击载荷下的动态索力响应问题。将机械系统简化为弹簧阻尼系统,基于Lagrange第二类方程推导得到系统动力学方程,并通过Runge-Kutta方法求解模型,得到撕裂带测试过程中的绳索受力状态。研究在高速冲击载荷下,绳索阻尼的作用机理。进一步研究绳索弹性模量、阻尼以及绳索两端质量比对索力的影响规律,最后对比理论模型与验证实验的数据。结果表明:理论模型计算得到的绳索末端索力与实验结果趋势保持一致,验证了理论模型的正确性,对撕裂带测试装置的设计和控制具有指导意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李东兴
侯森浩
孙海宁
黎帆
唐晓强
关键词 撕裂带测试装置冲击载荷索力响应动力学模型    
Abstract:Test equipment was developed to test the dynamic forces on the cable of a parachute tear-band for high-speed impact loads. The mechanics of the test equipment were simplified as a spring damping model with the system dynamics equations then derived based on the second Lagrange equation. The Runge-Kutta method was used to solve the equations to calculate the tension in the cable during the band tearing test. The results showed that the rope damping plays a major role in the early stage of the high-speed impact loading. The influences of the elastic modulus, damping and mass ratio of the two ends on the cable forces were then further studied. Comparison of the theoretical model with experimental data shows that the predicted cable forces are consistent with the experimental data, which verifies the model accuracy. The results of this study can guide the design of tear-band test equipment.
Key wordstear-band test equipment    impact loads    cable forces    dynamic model
收稿日期: 2021-08-16      出版日期: 2023-03-04
基金资助:国家自然科学基金资助项目(51975307,51975044)
通讯作者: 唐晓强,教授,E-mail:tang-xq@tsinghua.edu.cn      E-mail: tang-xq@tsinghua.edu.cn
作者简介: 李东兴(1997-),男,博士研究生。
引用本文:   
李东兴, 侯森浩, 孙海宁, 黎帆, 唐晓强. 航天降落伞撕裂带测试装置及其动态索力响应特性[J]. 清华大学学报(自然科学版), 2023, 63(3): 294-301.
LI Dongxing, HOU Senhao, SUN Haining, LI Fan, TANG Xiaoqiang. Test equipment for a parachute tear-band to measure the cable force dynamics. Journal of Tsinghua University(Science and Technology), 2023, 63(3): 294-301.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2022.26.003  或          http://jst.tsinghuajournals.com/CN/Y2023/V63/I3/294
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] 唐晓强, 李东兴, 侯森浩, 等. 一种用于测试撕裂力的测试装置:CN202011372253.3[P]. 2020-11-30. TAND X Q, LI D X, HOU S H, et al. Testing device for testing tearing force:CN202011372253.3[P]. 2020-11-30. (in Chinese)
[2] SPAK K, AGNES G, INMAN D. Cable modeling and internal damping developments[J]. Applied Mechanics Reviews, 2013, 65(1):010801.
[3] DRISCOLL F R, LUECK R G, NAHON M. Development and validation of a lumped-mass dynamics model of a deep-sea ROV system[J]. Applied Ocean Research, 2000, 22(3):169-182.
[4] GERSTMAYR J, SHABANA A A. Analysis of thin beams and cables using the absolute nodal co-ordinate formulation[J]. Nonlinear Dynamics, 2006, 45(1-2):109-130.
[5] BERZERI M, SHABANA A A. Development of simple models for the elastic forces in the absolute nodal co-ordinate formulation[J]. Journal of Sound and Vibration, 2000, 235(4):539-565.
[6] HTUN T Z, SUZUKI H, GARCÍA-VALLEJO D. Dynamic modeling of a radially multilayered tether cable for a remotely-operated underwater vehicle (ROV) based on the absolute nodal coordinate formulation (ANCF)[J]. Mechanism and Machine Theory, 2020, 153:103961.
[7] 於祖庆, 兰朋, 李昆昆, 等. 基于分段连续ANCF缆索单元的输电线缆动力学建模与仿真[J]. 机械工程学报, 2018, 54(19):70-77. YU Z Q, LAN P, LI K K, et al. Dynamic simulation of electrical wire based on the piecewise absolute nodal coordinate formulation cable element[J]. Journal of Mechanical Engineering, 2018, 54(19):70-77. (in Chinese)
[8] MANKALA K K, AGRAWAL S K. Dynamic modeling and simulation of satellite tethered systems[C]//Proceedings of ASME 2003 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Chicago, USA:ASME, 2004:144-156.
[9] 包继虎. 高速电梯提升系统动力学建模及振动控制方法研究[D]. 上海:上海交通大学, 2014. BAO J H. Dynamics modeling and vibration control of high-speed elevator hoisting system[D]. Shanghai:Shanghai Jiao Tong University, 2014. (in Chinese)
[10] 潘冬, 张越, 魏承, 等. 空间大型末端执行器绳索捕获动力学建模与仿真[J]. 振动与冲击, 2015, 34(1):74-79, 189. PAN D, ZHANG Y, WEI C, et al. Dynamic modeling and simulation on rope capturing by space large end effector[J]. Journal of Vibration and Shock, 2015, 34(1):74-79, 189. (in Chinese)
[11] EIDSVIK O A, SCHJØLBERG I. Time domain modeling of ROV umbilical using beam equations[J]. IFAC-PapersOnLine, 2016, 49(23):452-457.
[12] LU W, GE F, WANG L, et al. On the slack phenomena and snap force in tethers of submerged floating tunnels under wave conditions[J]. Marine Structures, 2011, 24(4):358-376.
[13] ZHU Z H, MEGUID S A. Nonlinear FE-based investigation of flexural damping of slacking wire cables[J]. International Journal of Solids and Structures, 2007, 44(16):5122-5132.
[1] 李建, 王生海, 刘将, 高钰富, 韩广冬, 孙玉清. 绳驱动船舱清洗机器人动力学建模及鲁棒控制[J]. 清华大学学报(自然科学版), 2024, 64(3): 562-577.
[2] 王煜天, 张瑞杰, 吴军, 汪劲松. 移动式混联喷涂机器人的动力学性能波动评价[J]. 清华大学学报(自然科学版), 2022, 62(5): 971-977.
[3] 赵雅聪, 王启明. FAST索牵引并联机器人的动力学建模与仿真[J]. 清华大学学报(自然科学版), 2022, 62(11): 1772-1779.
[4] 侯森浩, 唐晓强, 孙海宁, 崔志伟, 王殿君. 面向航天器分离的高速索力传递特性[J]. 清华大学学报(自然科学版), 2021, 61(3): 177-182.
[5] 徐志, 马静, 王浩, 赵建世, 胡雅杰, 杨贵羽. 长江口影响水资源承载力关键指标与临界条件[J]. 清华大学学报(自然科学版), 2019, 59(5): 364-372.
[6] 王潇剑, 吴军, 岳义, 许允斗. 2UPU/SP 3自由度并联机构的动力学性能评价[J]. 清华大学学报(自然科学版), 2019, 59(10): 838-846.
[7] 杨飞, 傅旭东. 垂向基于谱方法的三维弯道水流模型[J]. 清华大学学报(自然科学版), 2018, 58(10): 914-920.
[8] 张彬彬, 王立平, 吴军. 3自由度并联机构的动力学各向同性评价方法[J]. 清华大学学报(自然科学版), 2017, 57(8): 803-809.
[9] 于广, 王立平, 吴军, 王冬. 3自由度并联主轴头的动力学建模及动态特性[J]. 清华大学学报(自然科学版), 2017, 57(12): 1317-1323.
[10] 赵富龙, 薄涵亮, 刘潜峰. 压力变化条件下静止液滴相变模型[J]. 清华大学学报(自然科学版), 2016, 56(7): 759-764,771.
[11] 郑东, 钟北京. 四组分汽油替代燃料的化学动力学模型[J]. 清华大学学报(自然科学版), 2015, 55(10): 1135-1142.
[12] 刘荣华, 魏加华, 翁燕章, 王光谦, 唐爽. HydroMP:基于云计算的水动力学建模及计算服务平台[J]. 清华大学学报(自然科学版), 2014, 54(5): 575-583.
[13] 冯蘅, 李清海, 甘超, 蒙爱红, 张衍国. 循环流化床返料装置1维动力学模型[J]. 清华大学学报(自然科学版), 2014, 54(2): 229-234.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn