Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (9): 1548-1558    DOI: 10.16511/j.cnki.qhdxxb.2022.26.004
  机械工程 本期目录 | 过刊浏览 | 高级检索 |
大跨度完全约束空间3-DOF柔索驱动并联机器人稳定性灵敏度研究
刘鹏1,2, 乔心州1
1. 西安科技大学 机械工程学院, 西安 710054;
2. 西安电子科技大学 电子装备结构设计教育部重点实验室, 西安 710000
Stability sensitivity of a completely restrained 3-DOF cable-driven parallel robot with four long-span cables
LIU Peng1,2, QIAO Xinzhou1
1. School of Mechanical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China;
2. Key Laboratory of Electronic Equipment Structure Design, Ministry of Education, Xidian University, Xi'an 710000, China
全文: PDF(6145 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 由于驱动柔索的柔性和单向约束特性,以及柔索悬垂的影响,大跨度完全约束空间3-DOF柔索驱动并联机器人稳定性面临着严峻挑战。该文建立此种机器人的稳定性评价模型及其稳定性灵敏度分析模型,探索并分析末端执行器位置和柔索驱动力等因素对机器人稳定性的影响程度。首先,基于机器人运动学和动力学模型,提出稳定性位置和柔索驱动力影响因子,建立稳定性评价模型。其次,采用灰色关联分析方法建立机器人稳定性灵敏度分析模型,提出采用关联度研究和衡量机器人末端执行器位置和柔索驱动力等参数对机器人稳定性的影响程度。最后,以大跨度4索驱动摄像机器人为例,对所建立的稳定性评价模型和敏感度分析模型进行仿真研究。结果表明:摄像机器人稳定性对驱动力影响因素的敏感度较大,其次为位置影响因素,其中稳定性对末端摄像平台y方向位移的关联度最小。研究结果为大跨度完全约束空间3-DOF柔索驱动并联机器人运动轨迹的稳健优化设计与运动控制提供了指导方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘鹏
乔心州
关键词 柔索驱动并联机器人稳定性灵敏度灰色关联分析    
Abstract:The stability of a completely restrained 3-DOF cable-driven parallel robot with four long-span cables, due to the flexibility and unidirectional restraint characteristics of the cables, as well as the influence of the large-span cable sags, faces severe challenges. This paper establishes the stability evaluation model and stability sensitivity analysis model for the robot, explores and analyzes the influence of the end-effector positions and the cable tensions on the stability of the robot. Firstly, based on kinematics and dynamics model of the robot, the stability position influence factor and the cable tension influence factor are proposed, and furthermore, the stability evaluation model is established. Secondly, the gray correlation analysis method is used to establish the stability sensitivity analysis model for the robot, and it is proposed to use the correlation degree to study and measure the influence degree of the end-effector positions and cable tensions on the stability of the robot. Finally, the established stability evaluation model and sensitivity analysis model are simulated for a cable-driven camera robot with four long-span cables. The research results show that the stability of the camera robot is more sensitive to cable tension influence factors. Among them, the stability has the smallest correlation to the y-direction displacement of the camera platform. This research provides guidance for the robust optimization design of the motion trajectory and motion control for the robot.
Key wordscable-driven parallel robot    stability    sensitivity    grey correlation analysis
收稿日期: 2021-09-05      出版日期: 2022-08-18
引用本文:   
刘鹏, 乔心州. 大跨度完全约束空间3-DOF柔索驱动并联机器人稳定性灵敏度研究[J]. 清华大学学报(自然科学版), 2022, 62(9): 1548-1558.
LIU Peng, QIAO Xinzhou. Stability sensitivity of a completely restrained 3-DOF cable-driven parallel robot with four long-span cables. Journal of Tsinghua University(Science and Technology), 2022, 62(9): 1548-1558.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2022.26.004  或          http://jst.tsinghuajournals.com/CN/Y2022/V62/I9/1548
  
  
  
  
  
  
  
  
  
  
  
  
[1] 崔志伟, 唐晓强, 侯森浩, 等. 索驱动并联机器人可控刚度特性[J]. 清华大学学报(自然科学版), 2018, 58(2): 204-211. CUI Z W, TANG X Q, HOU S H, et al. Characteristics of controllable stiffness for cable-driven parallel robots[J]. Journal of Tsinghua University (Science and Technology), 2018, 58(2): 204-211. (in Chinese)
[2] TANG X Q. An overview of the development for cable-driven parallel manipulator[J]. Advances in Mechanical Engineering, 2014, 6: 823028.
[3] VERHOEVEN R. Analysis of the workspace of tendon-based Stewart platforms[D]. Duisburg: Gerhard-Mercator-University, 2004.
[4] YAO R, ZHU W B, SUN C H, et al. Pose planning for the feed support system of FAST[J]. Advances in Mechanical Engineering, 2014, 6: 209167.
[5] 张立勋, 李来禄, 姜锡泽, 等. 柔索驱动的宇航员深蹲训练机器人力控与实验研究[J]. 机器人, 2017, 39(5): 733-741. ZHANG L X, LI L L, JIANG X Z, et al. Force control and experimental study of a cable-driven robot for astronaut deep squat training[J]. Robot, 2017, 39(5): 733-741. (in Chinese)
[6] BARNETT E, GOSSELIN C. Large-scale 3D printing with a cable-suspended robot[J]. Additive Manufacturing, 2015, 7: 27-44.
[7] WANG X G, PENG M J, HU Z H, et al. Feasibility investigation of large-scale model suspended by cable-driven parallel robot in hypersonic wind tunnel test[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2017, 231(13): 2375-2383.
[8] AMARE Z, ZI B, QIAN S, et al. Three-dimensional static and dynamic stiffness analyses of the cable-driven parallel robot with non-negligible cable mass and elasticity[J]. Mechanics Based Design of Structures and Machines, 2018, 46(4): 455-482.
[9] CHAWLA I, PATHAK P M, NOTASH L, et al. Workspace analysis and design of large-scale cable-driven printing robot considering cable mass and mobile platform orientation[J]. Mechanism and Machine Theory, 2021, 165: 104426.
[10] BEHZADIPOUR S, KHAJEPOUR A. Stiffness of cable-based parallel manipulators with application to stability analysis[J]. Journal of Mechanical Design, 2006, 128(1): 303-310.
[11] BOSSCHER P M. Disturbance robustness measures and wrench-feasibile workspace generation techniques for cable-driven robots[D]. Atlanta: Georgia Institute of Technology, 2004.
[12] LIU P, QIU Y Y, SU Y, et al. On the minimum cable tensions for the cable-based parallel robots[J]. Journal of Applied Mathematics, 2014: 350492.
[13] LIU P, QIU Y Y, SU Y. A new hybrid force-position measure approach on the stability for a camera robot[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2016, 230(14): 2508-2516.
[14] 赵志刚, 王砚麟, 李劲松. 多机器人协调吊运系统力位姿混合运动稳定性评价方法[J]. 哈尔滨工程大学学报, 2018, 39(1): 148-155. ZHAO Z G, WANG Y L, LI J S. Appraise of dynamical stability of multi-robots cooperatively lifting system based on hybrid force-position-pose approach[J]. Journal of Harbin Engineering University, 2018, 39(1): 148-155. (in Chinese)
[15] 杜敬利, 段学超, 保宏. 考虑柔索垂度影响的索支撑系统静刚度[J]. 机械工程学报, 2010, 46(17): 29-34. DU J L, DUAN X C, BAO H. Static stiffness of a cable-supporting system with the cable sag effects considered[J]. Journal of Mechanical Engineering, 2010, 46(17): 29-34. (in Chinese)
[16] LIU P, QIU Y Y. Tension optimization for a cable-driven parallel robot with non-negligible cable mass[J]. The Open Automation and Control Systems Journal, 2015, 7: 1973-1980.
[17] 刘顺青, 洪宝宁, 徐奋强, 等. 高液限土边坡稳定性影响因素的敏感性研究[J]. 防灾减灾工程学报, 2014, 34(5): 589-596. LIU S Q, HONG B N, XU F Q, et al. Sensitivity studies on factors influencing stability of high liquid limit soil slope[J]. Journal of Disaster Prevention and Mitigation Engineering, 2014, 34(5): 589-596. (in Chinese)
[18] 李元松, 王玉, 朱冬林, 等. 边坡稳定性评价方法研究现状与发展趋势[J]. 武汉工程大学学报, 2021, 43(4): 428-435. LI Y S, WANG Y, ZHU D L, et al. Research status and developmental trends of slope stability evaluation method[J]. Journal of Wuhan Institute of Technology, 2021, 43(4): 428-435. (in Chinese)
[19] 刘春, 杜俊生, 王敬堃. 基于灰色关联分析理论的边坡稳定性预测[J]. 地下空间与工程学报, 2017, 13(5): 1424-1430. LIU C, DU J S, Wang J K. Prediction of slope stability based on gray relational analysis theory[J]. Chinese Journal of Underground Space and Engineering, 2017, 13(5): 1424-1430. (in Chinese)
[20] WANG X N, YANG W C, GE Y, et al. The influence of shrinkage-reducing agent solution properties on shrinkage of cementitious composite using grey correlation analysis[J]. Construction and Building Materials, 2020, 264: 120194.
[21] SU Y, QIU Y Y, LIU P. Optimal cable tension distribution of the high-speed redundant driven camera robots considering cable sag and inertia effects[J]. Advances in Mechanical Engineering, 2014, 6: 729020.
[22] 韦慧玲, 仇原鹰, 盛英. 高速绳牵引摄像机器人的运动稳定控制[J]. 西安电子科技大学学报(自然科学版), 2016, 43(5): 63-69, 104. WEI H L, QIU Y Y, SHENG Y. Motion stable control for cable-driven parallel camera robots with high speeds[J]. Journal of Xidian University (Natural Science), 2016, 43(5): 63-69, 104. (in Chinese)
[23] YIN J N, JIANG P, YAO R. An approximately analytical solution method for the cable-driven parallel robot in FAST[J]. Research in Astronomy and Astrophysics, 2021, 21(2): 046.
[24] 刘欣. 两种并联机器人的机构性能分析与运动控制研究[D]. 西安: 西安电子科技大学, 2009. LIU X. On the mechanism performance analysis and motion control of the two types of parallel manipulators[D]. Xi'an: Xidian University, 2009. (in Chinese)
[25] BEER F P, JOHNSTON JR E R, DEWOLF J T, et al. Mechanics of materials[M]. New York: McGraw-Нill, 2012.
[26] MARTYNYUK A A, CHERNIENKO V. A. Estimating the Lyapunov function and stability of motion of a system with equations of motion with an asymptotically expanded right-hand side[J]. International Applied Mechanics, 2021, 57(1): 11-18.
[27] DENG J L. Introduction to grey system theory[J]. The Journal of Grey System, 1989(1): 1-24.
[28] ZHU L H, ZHAO C, DAI J, Prediction of compressive strength of recycled aggregate concrete based on gray correlation analysis[J]. Construction and Building Materials, 2021, 273: 121750.
[29] GAO C L, LI S C, WANG J, et al. The risk assessment of tunnels based on grey correlation and entropy weight method[J]. Geotechnical and Geological Engineering, 2018, 36(3): 1621-1631.
[30] WEI H L, QIU Y Y, SU Y. Motion control strategy and stability analysis for high-speed cable-driven camera robots with cable inertia effects[J]. International Journal of Advanced Robotic Systems, 2016, 13(5): 1-9.
[1] 邱豪楠, 刘威, 唐悦, 王胡军, 郑靖. 仿生超滑涂层研究进展[J]. 清华大学学报(自然科学版), 2024, 64(3): 393-408.
[2] 李建, 王生海, 刘将, 高钰富, 韩广冬, 孙玉清. 绳驱动船舱清洗机器人动力学建模及鲁棒控制[J]. 清华大学学报(自然科学版), 2024, 64(3): 562-577.
[3] 金明, 陆羽笛, 李原森, 柳伟杰, 葛冰, 臧述升. 中心分级燃烧器流-热-声动态特性实验研究[J]. 清华大学学报(自然科学版), 2024, 64(1): 99-108.
[4] 苏阳, 李晓伟, 吴莘馨, 张作义. 核反应堆蒸汽发生器两相流不稳定性现象规律、研究方法及应用[J]. 清华大学学报(自然科学版), 2023, 63(8): 1184-1203.
[5] 胡钰文, 闫晓, 宫厚军, 王艳林, 周磊. 耦合传热并联矩形通道流动不稳定性数值研究[J]. 清华大学学报(自然科学版), 2023, 63(8): 1257-1263.
[6] 王喆鑫, 刘辉, 程李, 高丽蕾, 吕振雷, 江年铭, 何作祥, 刘亚强. 基于Monte Carlo模拟的全身骨扫描SPECT专用准直器设计[J]. 清华大学学报(自然科学版), 2023, 63(5): 811-817.
[7] 扈学超, 毕笑天, 刘策, 邵卫卫. 氢燃料微预混火焰燃烧不稳定性实验研究[J]. 清华大学学报(自然科学版), 2023, 63(4): 572-584.
[8] 江海龙, 王晓光, 王家骏, 柳汀, 林麒. 全模颤振四绳支撑系统运动特性与稳定性[J]. 清华大学学报(自然科学版), 2023, 63(11): 1856-1867.
[9] 赵彤, 蔡晨同, 王永飞, 卞鹏锡, 张毅博. 球头铣刀铣削薄板件颤振预测[J]. 清华大学学报(自然科学版), 2022, 62(9): 1474-1483.
[10] 陈长坤, 孙凤琳. 基于熵权灰色关联度分析的暴雨洪涝灾情评估方法[J]. 清华大学学报(自然科学版), 2022, 62(6): 1067-1073.
[11] 周伟, 李敏, 丘铭军, 张西龙, 柳江, 张洪波. 基于改进遗传算法的车身板件厚度优化[J]. 清华大学学报(自然科学版), 2022, 62(3): 523-532.
[12] 刘威, 谢小荣, 姜齐荣, 毛航银. 变流式新能源机组的次/超同步振荡、小扰动同步稳定性与阻抗模型分析[J]. 清华大学学报(自然科学版), 2022, 62(10): 1706-1714.
[13] 黄伟灿, 蒋晓华, 薛芃, 李欣阳, 沈稚栋, 孙宇光. 超导直流能源管道载流导体设计[J]. 清华大学学报(自然科学版), 2022, 62(10): 1715-1720.
[14] 陈亮, 秦兆博, 孔伟伟, 陈鑫. 基于最优前轮侧偏力的智能汽车LQR横向控制[J]. 清华大学学报(自然科学版), 2021, 61(9): 906-912.
[15] 周长聪, 常琦, 周春苹, 赵浩东, 史壮科. 基于非概率模型的飞机襟翼故障树分析[J]. 清华大学学报(自然科学版), 2021, 61(6): 636-642.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn