Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (9): 1467-1473    DOI: 10.16511/j.cnki.qhdxxb.2022.26.008
  过程系统工程 本期目录 | 过刊浏览 | 高级检索 |
于雪菲, 张帅, 刘琳琳, 都健
大连理工大学 化工学院, 化工系统工程研究所, 大连 116024
Carbon capture power plant scheduling based on information gap decision theory
YU Xuefei, ZHANG Shuai, LIU Linlin, DU Jian
Institute of Chemical Process Systems Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
全文: PDF(3978 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 作为目前最有潜力的大规模商业化减碳手段之一,基于化学溶剂吸收的燃烧后碳捕集技术有望实现化石能源的清洁使用。在燃煤火电厂动态运行的基础上耦合碳捕集系统对于推动“碳中和”进程具有重要意义。但是,大多数研究没有考虑诸如用电价格波动和用电量的变化等因素对耦合碳捕集系统的电厂的影响。为此,该文在建立电厂与碳捕集装置协同调度模型的基础上,引入信息间隙决策理论(information gap decision theory,IGDT)以同时满足系统的鲁棒性和经济性要求,通过风险追求和风险规避2种决策角度得到不同的调度方案,为系统的动态运行提供指导性意见。该文首先构建了确定性电厂与碳捕集装置耦合调度模型;其次,针对实时市场中负荷需求的不确定性,通过引入信息间隙决策理论,得到不同风险态度下的不确定性电厂与碳捕集装置耦合调度模型,优化确定系统调度的决策方案;最后,通过算例分析得到持有不同风险态度下的电厂与碳捕集装置的调度方案,验证了模型的可靠性和有效性。
E-mail Alert
关键词 碳捕集系统电厂优化调度信息间隙决策理论风险决策    
Abstract:As one of the most promising carbon reduction methods, solvent-based post-combustion carbon capture is expected to provide clean use of fossil fuels. Low-carbon coal-fired power plants with carbon capture scheduling can significantly advance the goal of "carbon neutrality". However, few studies have considered the impact of electricity price fluctuations and electricity consumption changes on power plant coupled with carbon capture device. This study integrated the characteristics of power plants and their carbon capture into an information gap decision theory (IGDT) model to analyze the uncertainties in the combined system. A deterministic scheduling model for the integrated power plant and carbon capture device was used with IGDT to describe the load demand uncertainty in the real-time market. Two certainty scheduling models were developed based on the users risk adverse attitude with the optimized scheduling decision based on either robustness or opportunity. The scheduling schemes of integrated power plant and carbon capture device with these two risk attitudes were used for a case study to demonstrate the reliability and effectiveness of the model.
Key wordscarbon capture system    power plant    optimized scheduling    information gap decision theory    risk decision
收稿日期: 2022-01-15      出版日期: 2022-08-18
于雪菲, 张帅, 刘琳琳, 都健. 基于信息间隙决策理论的碳捕集电厂调度[J]. 清华大学学报(自然科学版), 2022, 62(9): 1467-1473.
YU Xuefei, ZHANG Shuai, LIU Linlin, DU Jian. Carbon capture power plant scheduling based on information gap decision theory. Journal of Tsinghua University(Science and Technology), 2022, 62(9): 1467-1473.
链接本文:  或
[1] 黄雨涵, 丁涛, 李雨婷, 等. 碳中和背景下能源低碳化技术综述及对新型电力系统发展的启示[J]. 中国电机工程学报, 2021, 41(S1): 28-51.HUANG Y H, DING T, LI Y T, et al. Decarbonization technologies and inspirations for the development of novel power systems in the context of carbon neutrality[J]. Proceedings of the CSEE, 2021, 41(S1): 28-51. (in Chinese)
[2] WANG T L, HOVLAND J, JENS K J. Amine reclaiming technologies in post-combustion carbon dioxide capture[J]. Journal of Environmental Sciences, 2015, 27: 276-289.
[3] D'AMORE F, MOCELLIN P, VIANELLO C, et al. Economic optimisation of European supply chains for CO2 capture, transport and sequestration, including societal risk analysis and risk mitigation measures[J]. Applied Energy, 2018, 223: 401-415.
[4] ZAMAN M, LEE J H. Optimization of the various modes of flexible operation for post-combustion CO2 capture plant[J]. Computers & Chemical Engineering, 2015, 75: 14-27.
[5] ABDILAHI A M, MUSTAFA M W, ABUJARAD S Y, et al. Harnessing flexibility potential of flexible carbon capture power plants for future low carbon power systems: Review[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 3101-3110.
[6] MAVROMATIDIS G, OREHOUNIG K, CARMELIET J. Design of distributed energy systems under uncertainty: A two-stage stochastic programming approach[J]. Applied Energy, 2018, 222: 932-950.
[7] ZANTYE M S, ARORA A, FARUQUE HASAN M M. Operational power plant scheduling with flexible carbon capture: A multistage stochastic optimization approach[J]. Computers & Chemical Engineering, 2019, 130: 106544.
[8] ZHANG R F, JIANG T, BAI L Q, et al. Adjustable robust power dispatch with combined wind-storage system and carbon capture power plants under low-carbon economy[J]. International Journal of Electrical Power & Energy Systems, 2019, 113: 772-781.
[9] YANG J, SU C Q. Robust optimization of microgrid based on renewable distributed power generation and load demand uncertainty[J]. Energy, 2021, 223: 120043.
[10] BEN-HAIM Y. Info-gap decision theory: Decisions under severe uncertainty[M]. San Diego: Academic, 2006.
[11] LI Y C, WANG J K, HAN Y H, et al. Robust and opportunistic scheduling of district integrated natural gas and power system with high wind power penetration considering demand flexibility and compressed air energy storage[J]. Journal of Cleaner Production, 2020, 256: 120456.
[12] FATHI R, TOUSI B, GALVANI S. A new approach for optimal allocation of photovoltaic and wind clean energy resources in distribution networks with reconfiguration considering uncertainty based on info-gap decision theory with risk aversion strategy[J]. Journal of Cleaner Production, 2021, 259: 125984.
[13] COHEN S M, ROCHELLE G T, WEBBER M E. Optimal operation of flexible post-combustion CO2 capture in response to volatile electricity prices[J]. Energy Procedia, 2011, 4: 2604-2611.
[14] VAN PETEGHEM T, DELARUE E. Opportunities for applying solvent storage to power plants with post-combustion carbon capture[J]. International Journal of Greenhouse Gas Control, 2014, 21: 203-213.
[15] 于雪菲, 张帅, 刘琳琳, 等. 电厂和碳捕集装置同步集成与调度优化研究[J]. 化工学报, 2021, 72(3): 1447-1456. YU X F, ZHANG S, LIU L L, et al. Simultaneous integration and scheduling of power plant and carbon capture device[J]. CIESC Journal, 2021, 72(3): 1447-1456. (in Chinese)
[16] CHEN Q X, KANG C Q, XIA Q, et al. Optimal flexible operation of a CO2 capture power plant in a combined energy and carbon emission market[J]. IEEE Transactions on Power Systems, 2012, 27(3): 1602-1609.
[17] AGUILAR O, PERRY S J, KIM JK, et al. Design and optimization of flexible utility systems subject to variable conditions: Part 1 Modelling framework[J]. Chemical Engineering Research and Design, 2007, 85(8): 1136-1148.
[18] MIRZAEI M A, SADEGHI-YAZDANKHAH A, MOHAMMADI-IVATLOO B, et al. Integration of emerging resources in IGDT-based robust scheduling of combined power and natural gas systems considering flexible ramping products[J]. Energy, 2019, 189: 116195.
[19] MEHDIZADEH A, TAGHIZADEGAN N, SALEHI J. Risk-based energy management of renewable-based microgrid using information gap decision theory in the presence of peak load management[J]. Applied Energy, 2018, 211: 617-630.
[20] REDDY V S, KAUSHIK S C, TYAGI S K. Exergetic analysis and evaluation of coal-fired supercritical thermal power plant and natural gas-fired combined cycle power plant[J]. Clean Technologies and Environmental Policy, 2014, 16(3): 489-499.
[21] 王营营. 基于碳捕集的燃煤发电机组热力系统性能研究[D]. 北京: 华北电力大学, 2015. WANG Y Y. Thermodynamic performance analysis of the coal-fired power plant with CO2 capture[D]. Beijing: North China Electric Power University, 2015. (in Chinese)
[22] BANKOLE T, JONES D, BHATTACHARYYA D, et al. Optimal scheduling and its Lyapunov stability for advanced load-following energy plants with CO2 capture[J]. Computers & Chemical Engineering, 2018, 109: 30-47.
[23] 理查德. GAMS用户指南[M]. 魏传江, 王浩, 译. 北京: 中国水利水电出版社, 2009.RICHARD E R. GAMS: A user's guide[M]. WEI C J, WANG H, trans. Beijing: China Water & Power Press, 2009. (in Chinese)
[1] 蒋晓隆,刘培,李政. 数据协调方法在传感器故障监测中的应用[J]. 清华大学学报(自然科学版), 2014, 54(6): 763-768.
Full text



版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持