Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (9): 1524-1531    DOI: 10.16511/j.cnki.qhdxxb.2022.26.009
  机械工程 本期目录 | 过刊浏览 | 高级检索 |
基于外部视觉与机载IMU组合的爬壁机器人自主定位方法
张文, 丁雨林, 陈咏华, 孙振国
清华大学 机械工程系, 先进成形制造教育部重点实验室, 北京 100084
Autonomous positioning for wall climbing robots based on a combination of an external camera and a robot-mounted inertial measurement unit
ZHANG Wen, DING Yulin, CHEN Yonghua, SUN Zhenguo
Key Laboratory for Advanced Materials Processing Technology of Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(5832 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 针对相对封闭、磁干扰等特殊环境下传感器应用受限,导致爬壁机器人自主定位误差随时间累积的问题,该文提出并实现了一种基于外部RGB-D相机和惯性测量单元(inertial measurement unit,IMU)组合的爬壁机器人自主定位方法。该方法采用深度学习和核相关滤波(kernelized correlation filter,KCF)组合的目标跟踪方法进行初步位置定位;在此基础上,利用法向量方向投影的方法筛选出机器人外壳顶部的中心点,实现机器人定位中的位置定位。推导了机器人底盘法向量、横滚角与航向角的定量关系,设计了串联的扩展Kalman滤波器(extended Kalman filter,EKF)计算横滚角、俯仰角和航向角,实现机器人定位中的姿态估计。实验结果表明:该方法使爬壁机器人位置定位误差小于0.02 m,姿态估计的航向角和横滚角误差小于2.5°,俯仰角误差小于1.5°,有效地提高了爬壁机器人定位精度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张文
丁雨林
陈咏华
孙振国
关键词 RGB-D相机三维点云扩展Kalman滤波器爬壁机器人惯性测量单元    
Abstract:Sensor accuracy in special environments can be very limited due to closed systems and magnetic interference. For example, sensors on wall climbing robots can experience accumulation of autonomous positioning errors with time. The paper presents an autonomous positioning method for wall climbing robots based on an external RGB-D camera and a robot-mounted inertial measurement unit (IMU). This method uses the target tracking method with a deep learning and kernelized correlation filter (KCF) for preliminary positioning. A normal direction projection method is then used to locate the center on the top of the robot shell for the robot position positioning. The system determines the normal, the roll angle and the heading of the robot with a series EKF filter calculating the roll angle, pitch angle and heading to estimate the robot attitude. Tests show that the wall climbing robot positioning error is within 0.02 m, the heading error and the roll angle error for the attitude estimate are both within 2.5°, and the pitch angle error is within 1.5°. This system effectively improves the wall climbing robot positioning accuracy.
Key wordsRGB-D cameras    3D point cloud    extended Kalman filters    wall climbing robots    inertial measurement unit
收稿日期: 2021-10-05      出版日期: 2022-08-18
基金资助:孙振国,副教授,E-mail:sunzhg@tsinghua.edu.cn
引用本文:   
张文, 丁雨林, 陈咏华, 孙振国. 基于外部视觉与机载IMU组合的爬壁机器人自主定位方法[J]. 清华大学学报(自然科学版), 2022, 62(9): 1524-1531.
ZHANG Wen, DING Yulin, CHEN Yonghua, SUN Zhenguo. Autonomous positioning for wall climbing robots based on a combination of an external camera and a robot-mounted inertial measurement unit. Journal of Tsinghua University(Science and Technology), 2022, 62(9): 1524-1531.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2022.26.009  或          http://jst.tsinghuajournals.com/CN/Y2022/V62/I9/1524
  
  
  
  
  
  
  
  
  
  
  
  
[1] SHUKLA A, KARKI H. Application of robotics in offshore oil and gas industry: A review Part II[J]. Robotics and Autonomous Systems, 2016, 75: 508-524.
[2] 中华人民共和国国家能源局. 承压设备无损检测 第3部分超声检测: NB/T47013.3—2015[S]. 北京: 中国标准出版社, 2015. National Energy Administration of the People's Republic of China. Nondestructive testing of pressure equipments Part 3: Ultrasonic testing: NB/T47013.3-2015[S]. Beijing: Standards Press of China, 2015. (in Chinese)
[3] CHANG C L, CHANG C Y, TANG Z Y, et al. High-efficiency automatic recharging mechanism for cleaning robot using multi-sensor[J]. Sensors, 2018, 18(11): 3911.
[4] ZHU J S, SUN Z G, HUANG W, et al. Design of a master-slave composite wall climbing robot system for penstock assembly welding[C]//12th International Conference on Intelligent Robotics and Applications. Shenyang, China: Springer, 2019: 123-134.
[5] KIM Y, AN J, LEE J. Robust navigational system for a transporter using GPS/INS fusion[J]. IEEE Transactions on Industrial Electronics, 2018, 65(4): 3346-3354.
[6] FAN J Z, XU T, FANG Q Q, et al. A novel style design of a permanent-magnetic adsorption mechanism for a wall-climbing robot[J]. Journal of Mechanisms and Robotics, 2020, 12(3): 035001.
[7] 邢海峰, 陈志勇, 张新喜, 等. MIMU在不同情况下的可观测性分析[J]. 清华大学学报(自然科学版), 2020, 60(1): 82-88. XING H F, CHEN Z Y, ZHANG X X, et al. Observability analysis of MIMU devices in different conditions[J]. Journal of Tsinghua University (Science and Technology), 2020, 60(1): 82-88. (in Chinese)
[8] VENKATNARAYAN R H, SHAHZAD M. Enhancing indoor inertial odometry with WiFi[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2019, 3(2): 47.
[9] FAN Q G, SUN B W, SUN Y, et al. Data fusion for indoor mobile robot positioning based on tightly coupled INS/UWB[J]. The Journal of Navigation, 2017, 70(5): 1079-1097.
[10] MUR-ARTAL R, TARDÓS J D. ORB-SLAM2: An open-source SLAM system for monocular, stereo, and RGB-D cameras[J]. IEEE Transactions on Robotics, 2017, 33(5): 1255-1262.
[11] NEWCOMBE R A, IZADI S, HILLIGES O, et al. KinectFusion: Real-time dense surface mapping and tracking[C]//2011 10th IEEE International Symposium on Mixed and Augmented Reality. Basel, Switzerland: IEEE, 2011: 127-136.
[12] JIANG P, CHEN L, GUO H, et al. Novel indoor positioning algorithm based on Lidar/inertial measurement unit integrated system[J]. International Journal of Advanced Robotic Systems, 2021, 18(2): 1729881421999923.
[13] ROMERO-RAMIREZ F J, MUÑOZ-SALINAS R, MEDINA-CARNICER R. Speeded up detection of squared fiducial markers[J]. Image and vision Computing, 2018, 76: 38-47.
[14] MERRIAUX P, DUPUIS Y, BOUTTEAU R, et al. A study of Vicon system positioning performance[J]. Sensors, 2017, 17(7): 1591.
[15] ZHAO Y H, MENEGATTI E. MS3D: Mean-shift object tracking boosted by joint back projection of color and depth[C]//15th International Conference on Intelligent Autonomous Systems. Switzerland: Springer, 2018: 222-236.
[16] REDMON J, FARHADI A. YOLOv3: An incremental improvement[J]. arXiv, 2018: 1804.02767.
[17] HENRIQUES J F, CASEIRO R, MARTINS P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 583-596.
[18] WANG Y, RAJAMANI R. Direction cosine matrix estimation with an inertial measurement unit[J]. Mechanical Systems and Signal Processing, 2018, 109: 268-284.
[1] 邢海峰, 陈志勇, 张新喜, 郭美凤. MIMU在不同情况下的可观测性分析[J]. 清华大学学报(自然科学版), 2020, 60(1): 82-88.
[2] 黎奇, 白征东, 赵思浩, 戴东凯, 邢海峰. Allan方差方法分析环形激光陀螺仪噪声的性能评估[J]. 清华大学学报(自然科学版), 2019, 59(11): 887-894.
[3] 张新喜, 张嵘, 郭美凤, 程高峰, 牛树来. 基于足绑式INS的行人导航三轴磁强计在线校准[J]. 清华大学学报(自然科学版), 2016, 56(2): 211-217.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn