Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (7): 1228-1235    DOI: 10.16511/j.cnki.qhdxxb.2022.26.013
  论文 本期目录 | 过刊浏览 | 高级检索 |
城市群多模式交通网络结构韧性分析——以关中平原城市群为例
马书红, 武亚俊, 陈西芳
长安大学 运输工程学院, 西安 710064
Structural resilience of multimodal transportation networks in urban agglomerations: A case study of the Guanzhong Plain urban agglomeration network
MA Shuhong, WU Yajun, CHEN Xifang
College of Transportation Engineering, Chang'an University, Xi'an 710064, China
全文: PDF(4961 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为分析城市群多模式交通网络应对攻击时的韧性变化特征,该文基于复杂网络理论和韧性城市理论,构建了考虑吸收能力、缓冲能力和可恢复能力3个维度的网络结构韧性评估模型,并通过空间向量模计算网络结构韧性值。基于关中平原城市群城际公路、铁路客运数据构建了城市群客运网络,并借助空间网络分析工具ArcGis和Ucinet探讨城市群多模式交通网络的拓扑特征;考虑节点位置及其与周边地区交通的联系,提出了基于节点重要度的典型节点选取方法。结果表明:典型节点受到攻击后,网络的缓冲能力都处于较低状态,尤其是蔡家坡站点失效后,网络缓冲能力下降到0.388 9;节点度大的站点失效后,网络恢复到正常状态的能力差;普铁站和高铁站失效后对网络结构韧性的影响远大于公路客运站;结合典型节点特征和模拟结果,可针对性地提出网络结构韧性提升建议。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马书红
武亚俊
陈西芳
关键词 交通工程城市群多模式交通网络结构韧性韧性评估典型节点    
Abstract:The resilience of multimodal transportation networks in urban agglomerations to attacks was analyzed using a network structural resilience assessment model based on complex network theory and resilient city theory which considered the absorbing capacity, buffering ability and recovery ability of the networks. The network resilience was calculated by a space vector modulus. Data for road and railway passenger transport between cities in the Guanzhong Plain urban agglomeration (GZP agglomeration) was used to construct the regional transportation network. The topological characteristics of the multimodal transportation network were then analyzed using the ArcGis and Ucinet tools. Each node's geographical location and transport connections with the surrounding area were used to identify key nodes based on the node importance. Analyses of the effects of attacks on these key nodes in the multimodal transportation network showed that the network had poor buffering ability, especially after failure of the Caijiapo station when the buffer value decreased to 0.388 9. The system had very weak ability to return to the normal state after a site with a large node degree failed. Failures of the general railway station and the high-speed rail station had far greater impacts on the structural resilience than failure of the highway terminals. Analysis of the characteristics of the key nodes led to suggestions for improving the network structure resilience.
Key wordstraffic engineering    urban agglomeration    multimodal transportation network    structural resilience    resilience evaluation    key nodes
收稿日期: 2021-10-27      出版日期: 2022-06-16
基金资助:国家重点研发计划项目(2018YFB1601300);陕西省自然科学基础研究计划项目(2020JM-246);陕西省交通科技计划项目(21-13R)
作者简介: 马书红(1975—),女,教授。E-mail:msh@chd.edu.cn
引用本文:   
马书红, 武亚俊, 陈西芳. 城市群多模式交通网络结构韧性分析——以关中平原城市群为例[J]. 清华大学学报(自然科学版), 2022, 62(7): 1228-1235.
MA Shuhong, WU Yajun, CHEN Xifang. Structural resilience of multimodal transportation networks in urban agglomerations: A case study of the Guanzhong Plain urban agglomeration network. Journal of Tsinghua University(Science and Technology), 2022, 62(7): 1228-1235.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2022.26.013  或          http://jst.tsinghuajournals.com/CN/Y2022/V62/I7/1228
  
  
  
  
  
  
  
  
  
  
[1] 邵亦文, 徐江. 城市韧性:基于国际文献综述的概念解析[J]. 国际城市规划, 2015, 30(2):48-54. SHAO Y W, XU J. Understanding urban resilience:A conceptual analysis based on integrated international literature review[J]. Urban Planning International, 2015, 30(2):48-54. (in Chinese)
[2] 魏石梅, 潘竟虎. 中国地级及以上城市网络结构韧性测度[J]. 地理学报, 2021, 76(6):1394-1407. WEI S M, PAN J H. Network structure resilience of cities at the prefecture level and above in China[J]. Acta Geographica Sinica, 2021, 76(6):1394-1407. (in Chinese)
[3] LIU J, LU H P, MA H, et al. Network vulnerability analysis of rail transit plans in Beijing-Tianjin-Hebei region considering connectivity reliability[J]. Sustainability, 2017, 9(8):1479.
[4] 彭翀, 陈思宇, 王宝强. 中断模拟下城市群网络结构韧性研究:以长江中游城市群客运网络为例[J]. 经济地理, 2019, 39(8):68-76. PENG C, CHEN S Y, WANG B Q. Analyzing city network's structural resilience under disruption scenarios:A case study of passenger transport network in the middle reaches of Yangtze River[J]. Economic Geography, 2019, 39(8):68-76. (in Chinese)
[5] 张洁斐, 任刚, 马景峰, 等. 基于韧性评估的地铁网络修复时序决策方法[J]. 交通运输系统工程与信息, 2020, 20(4):14-20. ZHANG J F, REN G, MA J F, et al. Decision-making method of repair sequence for metro network based on resilience evaluation[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(4):14-20. (in Chinese)
[6] 黄莺, 刘梦茹, 魏晋果, 等. 基于韧性曲线的城市地铁网络恢复策略研究[J]. 灾害学, 2021, 36(1):32-36. HUANG Y, LIU M R, WEI J G, et al. Research on urban metro network recovery strategy based on resilience curve[J]. Journal of Catastrophology, 2021, 36(1):32-36. (in Chinese)
[7] 张玺. 基于网络效率的日变路网脆弱性识别方法[J]. 交通运输系统工程与信息, 2017, 17(2):176-182. ZHANG X. Day-to-day road network vulnerability identification based on network efficiency[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(2):176-182. (in Chinese)
[8] 李成兵, 张帅, 杨志成, 等. 蓄意攻击下城市群客运交通网络级联抗毁性仿真[J]. 交通运输系统工程与信息, 2019, 19(2):14-21. LI C B, ZHANG S, YANG Z C, et al. Invulnerabilitysimulation in urban agglomeration passenger traffic network under targeted attacks[J]. Journal of Transportation Systems Engineering and Information Technology, 2019, 19(2):14-21. (in Chinese)
[9] STUBBS-RICHARDSON M S, COSBY A K, BERGENE K D, et al. Searching for safety:Crime prevention in the era of Google[J]. Crime Science, 2018, 7(1):21.
[10] 王亮. 跨城市交通网络可恢复性测度方法与演化规律研究[D]. 哈尔滨工业大学, 2019. WANG L. Measuring method and evolution law of cross-city transportation network resilience[D]. Harbin Institute of Technology, 2019. (in Chinese)
[11] 戢晓峰, 谢军, 伍景琼. 考虑不同侵扰场景的高速公路韧性评估方法[J]. 中国安全生产科学技术, 2019, 15(1):12-19. JI X F, XIE J, WU J Q. Assessment method of expressway resilience considering different intrusion scenes[J]. Journal of Safety Science and Technology, 2019, 15(1):12-19. (in Chinese)
[12] 马书红, 胡美芳, 葛永, 等. 节点优势度模型在干线公路网布局优化中的应用[J]. 公路交通科技, 2016, 33(8):133-139. MA S H, HU M F, GE Y, et al. Application of nodal superiority degree model in optimization of arterial highway network layout[J]. Journal of Highway and Transportation Research and Development, 2016, 33(8):133-139. (in Chinese)
[13] 姚梦汝, 陈焱明, 周桢津, 等. 中国-东盟旅游流网络结构特征与重心轨迹演变[J]. 经济地理, 2018, 38(7):181-189. YAO M R, CHEN Y M, ZHOU Z J, et al. The evolution of structural features and gravity center for China-ASEAN tourist flow network[J]. Economic Geography, 2018, 38(7):181-189. (in Chinese)
[1] 萧星宇, 梅诗雨, 刘瑞琪, 王阔, 邓青, 黄丽达, 于峰. 新冠疫情对京津冀城市群城市发展的影响——以北京、天津、石家庄三大城市为例[J]. 清华大学学报(自然科学版), 2023, 63(6): 994-1002.
[2] 陈若宇, 周江评. 基于位置服务大数据的粤港澳大湾区通勤标度特征分析[J]. 清华大学学报(自然科学版), 2022, 62(7): 1195-1202.
[3] 李自圆, 孙昊, 李林波. 基于手机信令数据的长三角全域城际出行网络分析[J]. 清华大学学报(自然科学版), 2022, 62(7): 1203-1211.
[4] 杨星琪, 黄海军. 治理“大城市病”的城市群税收政策[J]. 清华大学学报(自然科学版), 2022, 62(7): 1212-1219.
[5] 马壮林, 高阳, 胡大伟, 王晋, 马飞, 熊英. 城市群绿色交通水平测度与时空演化特征实证研究[J]. 清华大学学报(自然科学版), 2022, 62(7): 1236-1250.
[6] 原雅丽, 杨小宝, 李虹慧, 四兵锋. 突发事件下城市群内旅客城际出行方式选择行为[J]. 清华大学学报(自然科学版), 2022, 62(7): 1142-1150.
[7] 景云, 李凯旋, 王旋, 郭思冶, 范骁. 高速铁路成网条件下跨城市群客流输送模式[J]. 清华大学学报(自然科学版), 2022, 62(7): 1151-1162.
[8] 杨扬, 张天雨, 朱宇婷, 姚恩建. 考虑建设时序和动态需求的城际公路充电设施优化布局[J]. 清华大学学报(自然科学版), 2022, 62(7): 1163-1177,1219.
[9] 陈长坤, 何凡, 赵冬月, 谢明峰. 基于系统机能曲线的城市道路公共交通系统韧性评估方法[J]. 清华大学学报(自然科学版), 2022, 62(6): 1016-1022.
[10] 李正兆, 傅大放, 王君娴, 闵克东, 张骏彧. 应对内涝灾害的城市韧性评估模型及应用[J]. 清华大学学报(自然科学版), 2022, 62(2): 266-276.
[11] 陈洪昕, 崔健, 张佐, 姚丹亚. 基于自然语言处理的交通拥堵程度评价[J]. 清华大学学报(自然科学版), 2016, 56(3): 287-293.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn