摘要中国高速铁路网络日益完善,城市群数量明显增多且辐射范围逐渐扩大,现有客流输送模式难以满足旅客出行需求,需研究在高速铁路成网条件下满足旅客跨城市群出行的客流输送模式。该文基于改进MNL (multinational logit)模型计算不同输送模式客流损失率,构建基于跨城市群出行选择的高速铁路网络化客流输送模式优化模型。针对模型中精准识别网络核心节点、客流中转换乘的问题,分别提出基于熵权TOPSIS (technique for order preference by similarity to ideal solution)的网络节点测度算法、基于网络中心性的中转换乘模式选取算法。选取节点测度值在0.15以上的22座城市构成的网络代表全局路网,实例结果表明:基于跨城市群出行选择的高速铁路网络化客流输送模式客流直达率提高11.54%,列车开行数量减少90列。
Abstract:China's high-speed railway network is becoming more developed and urban agglomerations are gradually expanding with significantly more new urban agglomerations. Passenger transportation modes need to be further studied to meet the needs of passengers traveling across urban agglomerations on high-speed rail networks. This study used an improved multinational logit (MNL) model to calculate the passenger flow loss rate of various transportation modes and constructed a model for optimizing high-speed railway network passenger transport based on the need for cross-urban group travel. The core nodes in the network were identified using a network node measurement algorithm based on the entropy weight technique for order preference by similarity to ideal solution (TOPSIS) algorithm. Transition nodes in the passenger flow were identified using a transition multiplication selection algorithm based on network centrality. The model was then applied to the network composed of 22 cities with node measurement values above 0.15 to analyze full and partial network connections. The results show that the total passenger flow rate on the high-speed railway networks for cross-city travel can be increased by 11.54% with 90 fewer trains.
景云, 李凯旋, 王旋, 郭思冶, 范骁. 高速铁路成网条件下跨城市群客流输送模式[J]. 清华大学学报(自然科学版), 2022, 62(7): 1151-1162.
JING Yun, LI Kaixuan, WANG Xuan, GUO Siye, FAN Xiao. Passenger flow transport modes of inter-city groups with a high-speed railway network. Journal of Tsinghua University(Science and Technology), 2022, 62(7): 1151-1162.
[1] GREENE W H, HENSHER D A. A latent class model for discrete choice analysis:Contrasts with mixed logit[J]. Transportation Research Part B:Methodological, 2003, 37(8):681-698. [2] 卞长志, 陆化普. 综合运输通道客流量分担模型研究[J]. 武汉理工大学学报(交通科学与工程版), 2009, 33(4):611-614. BIAN C Z, LU H P. Passenger flow-split model in comprehensive transportation corridor[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2009, 33(4):611-614. (in Chinese) [3] 王佳, 崔钊源, 陈佩虹. 京沪通道旅客出行方式选择研究[C]//2019世界交通运输大会论文集. 中国, 北京:中国公路学会, 2019:14. WANG J, CUI Z Y, CHEN P H. Study on the choice of passenger travel modes in Beijing-Shanghai passage[C]//Proceedings of World Transport Convention 2019. Beijing, China:China Highway & Transportation Society. (in Chinese) [4] GHOSEIRI K, SZIDAROVSZKY F, ASGHARPOUR M J. A multi-objective train scheduling model and solution[J]. Transportation Research Part B:Methodological, 2004, 38(10):927-952. [5] ALBERTO C, LEO K, PAOLO T. Wiley encyclopedia of operations research and management science[M]. Hoboken:Wiley Press, 2011. [6] 秦进, 谭宇超, 张威, 等. 基于时空网络的城际高速铁路列车开行方案优化方法[J]. 铁道学报, 2020, 42(2):1-10. QIN J, TAN Y C, ZHANG W, et al. Train planning optimization for intercity railway based on space-time network[J]. Journal of the China Railway Society, 2020, 42(2):1-10. (in Chinese) [7] 张鹏. 面向长距离客流的高速铁路列车开行方案编制与评价研究[D]. 石家庄:石家庄铁道大学, 2020. ZHANG P. Research on the compilation and evaluation of high-speed railway train operation schemes for long-distance passenger flow[D]. Shijiazhuang:Shijiazhuang Tiedao University, 2020. (in Chinese) [8] 王锰锰. 基于换乘运输组织模式的高速铁路产品设计[D]. 成都:西南交通大学, 2016. WANG M M. High-speed railway product design based on transfer transportation organization mode[D]. Chengdu:Southwest Jiaotong University, 2016. (in Chinese) [9] 李琼, 黄鹏. 客运专线旅客换乘问题研究[J]. 铁道运输与经济, 2009, 31(1):23-26. LI Q, HUANG P. Study on passenger transfer of passenger-dedicated lines[J]. Railway Transport and Economy, 2009, 31(1):23-26. (in Chinese) [10] 刘晓溪, 李博. 基于高速铁路枢纽站的客流中转换乘方案选择研究[J]. 铁道运输与经济, 2018, 40(11):32-37, 63. LIU X X, LI B. A study on the scheme selection of transfer activities within the high-speed railway hub[J]. Railway Transport and Economy, 2018, 40(11):32-37, 63. (in Chinese) [11] 孙晓斐, 吕红霞, 李晟东. 西成通道旅客快速客运交通方式选择分析[J]. 铁道经济研究, 2018(5):42-47. SUN X F, LV H X, LI S D. Analysis of the choice of passenger transport mode in Chengdu-Xi'an channel[J]. Railway Economics Research, 2018(5):42-47. (in Chinese) [12] 郑晓静. 基于出行链的通道交通方式选择模型研究[D]. 西安:长安大学, 2016. ZHENG X J. Study on users' transportation choice of transportation corridor model based on travel chain[D]. Xi'an:Chang'an University, 2016. (in Chinese) [13] 张南. 高速铁路列车开行合理距离研究[D]. 成都:西南交通大学, 2019. ZHANG N. Research on reasonable running distance of high speed railway trains[D]. Chengdu:Southwest Jiaotong University, 2019. (in Chinese) [14] HECKMAN J J, STIXRUD J, URZUA S. The effects of cognitive and noncognitive abilities on labor market outcomes and social behavior[J]. Journal of Labor Economics, 2006, 24(3):411-482. [15] 鲍晶晶. 基于经济效益计算的中长距离列车开行模式探讨[J]. 综合运输, 2018, 40(3):61-65. BAO J J. Discussion on the opening mode of medium and long distance train based on economic benefit calculation[J]. China Transportation Review, 2018, 40(3):61-65. (in Chinese) [16] 刘忠国. 基于熵权TOPSIS和模糊贝叶斯网络的冷链物流配送系统风险评价研究[D]. 南昌:江西财经大学, 2020. LIU Z G. Research on risk evaluation of cold chain logistics distribution system based on entropy weighted TOPSIS and fuzzy Bayesian network[D]. Nanchang:Jiangxi University of Finance and Economics, 2020. (in Chinese) [17] SIMINI F, GONZÁLEZ M C, MARITAN A, et al. A universal model for mobility and migration patterns[J]. Nature, 2012, 484(7392):96-100. [18] 王文宪. 基于动态需求的高速铁路旅客列车开行方案评价与调整理论研究[D]. 成都:西南交通大学, 2017. WANG W X. Research on evaluation and adjustment of high-speed railway line plan based on dynamic demand[D]. Chengdu:Southwest Jiaotong University, 2017. (in Chinese)