Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (7): 1163-1177,1219    DOI: 10.16511/j.cnki.qhdxxb.2022.26.017
  论文 本期目录 | 过刊浏览 | 高级检索 |
考虑建设时序和动态需求的城际公路充电设施优化布局
杨扬1, 张天雨1, 朱宇婷2, 姚恩建1
1. 北京交通大学 综合交通运输大数据应用技术交通运输行业重点实验室, 北京 100044;
2. 北京工商大学 电商与物流学院, 北京 100048
Optimizing the deployment of charging systems on an expressway network considering the construction time sequence and the dynamic charging demand
YANG Yang1, ZHANG Tianyu1, ZHU Yuting2, YAO Enjian1
1. Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport, Beijing Jiaotong University, Beijing 100044, China;
2. School of E-business and Logistics, Beijing Technology and Business University, Beijing 100048, China
全文: PDF(14551 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 该文围绕城市群内或城际间公路网络充电设施布局规划问题,提出一个考虑动态充电需求和建设时序的双层优化模型。首先,下层模型基于动态交通流分配模型,在多用户行驶及充电行为仿真的基础上得到均衡状态下的充电需求时空分布;其次,上层模型以投资运营商的总成本最小为目标,考虑建设时序和服务水平的约束,对充电设施位置及容量进行优化;最后,选取山东半岛城市群中济南与青岛的城际公路网络作为研究实例。结果表明:所设计的模型通过对用户充电偏好、路网交通状态和设施工况之间的信息进行动态交互,能够有效估计充电系统的动态服务水平,进而获得满意的公路网充电设施布局方案。此外,分别从正向和逆向建设时序对布局优化方案进行讨论,结果表明:在同一服务水平约束下,长期的网络布局应考虑城市群内的未来年能耗需求,宜采用逆向建设时序进行合理规划。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨扬
张天雨
朱宇婷
姚恩建
关键词 交通工程充电设施双层布局优化电动汽车动态交通分配建设时序    
Abstract:A bi-level optimization model was developed for planning charging facility deployment on an intercity highway network. The model balances the variable charging demand and the construction time sequence. The lower model is based on a dynamic traffic assignment model. The spatial-temporal distribution of the charging demand at equilibrium was obtained from simulations of multi-user driving and charging behavior. The upper model optimizes the charging station's locations and capacities using construction time sequence and level of service (LOS) constraints to minimize the operator investment. The model is then used to analyze the intercity highway network between Jinan and Qingdao in the Shandong Peninsula urban agglomeration. The model provides reliable estimates of the real-time charging system LOS and a satisfactory layout based on the user chargig preferences, network traffic conditions, and facility conditions. The layout was then analysed using forward and reverse construction time sequences. The results show that for the same LOS constraint, long-term deployment should consider future energy demands and the planners should use the reverse construction time sequence method.
Key wordstraffic engineering    charging infrastructure    bi-level optimal deployment    electric vehicles    dynamic traffic assignment    construction time sequence
收稿日期: 2021-10-29      出版日期: 2022-06-16
基金资助:中央高校基本科研业务费项目(2020YJS093);国家自然科学基金资助项目(71801012,71931003)
通讯作者: 杨扬,副教授,E-mail:y_yang@bjtu.edu.cn      E-mail: y_yang@bjtu.edu.cn
作者简介: 张天雨(1997—),男,博士研究生。
引用本文:   
杨扬, 张天雨, 朱宇婷, 姚恩建. 考虑建设时序和动态需求的城际公路充电设施优化布局[J]. 清华大学学报(自然科学版), 2022, 62(7): 1163-1177,1219.
YANG Yang, ZHANG Tianyu, ZHU Yuting, YAO Enjian. Optimizing the deployment of charging systems on an expressway network considering the construction time sequence and the dynamic charging demand. Journal of Tsinghua University(Science and Technology), 2022, 62(7): 1163-1177,1219.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2022.26.017  或          http://jst.tsinghuajournals.com/CN/Y2022/V62/I7/1163
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] China Daily. China's vehicles in numbers[EB/OL]. (2021-04-11)[2022-05-10]. https://global.chinadaily.com.cn/a/202204/11/WS6253ce11a310fd2b29e56419.html.
[2] Min News. Embarrassment:Charge for one hour, queue for four hours[EB/OL]. (2022-04-13)[2022-05-10]. https://min.news/en/digital/279f868e061b1445de96b00113d54ce1.html.
[3] China Daily. EV drivers queue to recharge during holiday[EB/OL]. (2021-10-11)[2022-05-10]. https://global.chinadaily.com.cn/a/202110/11/WS61639f31a310cdd39bc6e0b7.html.
[4] 郭创新, 刘洞宇, 朱承治, 等. 电动汽车居民区充电负荷建模分析[J]. 电力自动化设备, 2020, 40(1):1-9. GUO C X, LIU D Y, ZHU C Z, et al. Modeling and analysis of electric vehicle charging load in residential area[J]. Electric Power Automation Equipment, 2020, 40(1):1-9. (in Chinese)
[5] HU D D, ZHANG J S, ZHANG Q. Optimization design of electric vehicle charging stations based on the forecasting data with service balance consideration[J]. Applied Soft Computing, 2019, 75:215-226.
[6] ZENG M, PAN Y F, ZHANG D Y, et al. Data-driven location selection for battery swapping stations[J]. IEEE Access, 2019, 7:133760-133771.
[7] LI S Y, HUANG Y X, MASON S J. A multi-period optimization model for the deployment of public electric vehicle charging stations on network[J]. Transportation Research Part C:Emerging Technologies, 2016, 65:128-143.
[8] 曹小曙, 胡培婷, 刘丹. 电动汽车充电站选址研究进展[J]. 地理科学进展, 2019, 38(1):139-152. CAO X S, HU P T, LIU D. Progress of research on electric vehicle charging stations[J]. Progress in Geography, 2019, 38(1):139-152. (in Chinese)
[9] LIU Z C, SONG Z Q. Network user equilibrium of battery electric vehicles considering flow-dependent electricity consumption[J]. Transportation Research Part C:Emerging Technologies, 2018, 95:516-544.
[10] HE J, YANG H, TANG T Q, et al. An optimal charging station location model with the consideration of electric vehicle's driving range[J]. Transportation Research Part C:Emerging Technologies, 2018, 86:641-654.
[11] 郇宁, 姚恩建, 杨扬, 等. 电动汽车混入条件下随机动态用户均衡分配模型[J]. 交通运输工程学报, 2019, 19(5):150-161. HUAN N, YAO E J, YANG Y, et al. Stochastic dynamic user equilibrium assignment model considering penetration of electric vehicles[J]. Journal of Traffic and Transportation Engineering, 2019, 19(5):150-161. (in Chinese)
[12] 张美霞, 蔡雅慧, 杨秀, 等. 考虑用户充电差异性的家用电动汽车充电需求分布分析方法[J]. 电力自动化设备, 2020, 40(2):154-161. ZHANG M X, CAI Y H, YANG X, et al. Charging demand distribution analysis method of household electric vehicles considering users' charging difference[J]. Electric Power Automation Equipment, 2020, 40(2):154-161. (in Chinese)
[13] 贾龙, 胡泽春, 宋永华. 考虑不同类型充电需求的城市内电动汽车充电设施综合规划[J]. 电网技术, 2016, 40(9):2579-2587. JIA L, HU Z C, SONG Y H. An integrated planning of electric vehicle charging facilities for urban area considering different types of charging demands[J]. Power System Technology, 2016, 40(9):2579-2587. (in Chinese)
[14] XIE F, LIU C Z, LI S Y, et al. Long-term strategic planning of inter-city fast charging infrastructure for battery electric vehicles[J]. Transportation Research Part E:Logistics and Transportation Review, 2018, 109:261-276.
[15] 李浩, 陈浩, 陆续, 等. 考虑排放约束的电动汽车混行交通路网均衡模型[J]. 交通运输工程与信息学报, 2021, 19(4):24-35, 117. LI H, CHEN H, LU X, et al. Mixed traffic network equilibrium with battery electric vehicles considering emission constraints[J]. Journal of Transportation Engineering and Information, 2021, 19(4):24-35, 117. (in Chinese)
[16] 袁胜强, 曾小清, 张伟略, 等. 城市快速路建设时机的决策模型与准则[J]. 同济大学学报(自然科学版), 2019, 47(9):1294-1301. YUAN S Q, ZENG X Q, ZHANG W L, et al. Decision model and criteria of urban expressway construction timing[J]. Journal of Tongji University (Natural Science), 2019, 47(9):1294-1301. (in Chinese)
[17] 程林, 张靖, 黄仁乐, 等. 基于多能互补的综合能源系统多场景规划案例分析[J]. 电力自动化设备, 2017, 37(6):282-287. CHENG L, ZHANG J, HUANG R L, et al. Case analysis of multi-scenario planning based on multi-energy complementation for integrated energy system[J]. Electric Power Automation Equipment, 2017, 37(6):282-287. (in Chinese)
[18] 陈昌铭, 张群, 黄亦昕, 等. 考虑最优建设时序和云储能的园区综合能源系统优化配置方法[J]. 电力系统自动化, 2022, 46(2):24-32. CHEN C M, ZHANG Q, HUANG Y X, et al. Optimal configuration method of park-level integrated energy system considering optimal construction time sequence and cloud energystorage[J]. Automation of Electric Power Systems, 2022, 46(2):24-32. (in Chinese)
[19] 杨扬, 姚恩建, 王梅英, 等. 电动汽车混入条件下的随机用户均衡分配模型[J]. 中国公路学报, 2015, 28(9):91-97. YANG Y, YAO E J, WANG M Y, et al. Stochastic user equilibrium assignment model for electric vehicle under hybrid traffic condition[J]. China Journal of Highway and Transport, 2015, 28(9):91-97. (in Chinese)
[20] 叶露, 郭倩芸, 倪舒晨, 等. 混合交通网络充电站选址模型[J]. 交通运输工程与信息学报, 2019, 17(4):97-104. YE L, GUO Q Y, NI S C, et al. Charging station location model for mixed traffic network[J]. Journal of Transportation Engineering and Information, 2019, 17(4):97-104. (in Chinese)
[1] 毕军, 杜宇佳, 王永兴, 左小龙. 基于用户综合满意度的电动汽车充电诱导优化模型[J]. 清华大学学报(自然科学版), 2023, 63(11): 1750-1759.
[2] 马书红, 杨磊, 陈西芳, 朱敏. 城市群生态综合交通网络组团特性分析与关键节点识别[J]. 清华大学学报(自然科学版), 2023, 63(11): 1770-1780.
[3] 马书红, 武亚俊, 陈西芳. 城市群多模式交通网络结构韧性分析——以关中平原城市群为例[J]. 清华大学学报(自然科学版), 2022, 62(7): 1228-1235.
[4] 仇斌, 梁宏毅, 董国华, 应梓浩, 刘亚辉. 国内外燃料电池汽车商业化示范运营评价方法对比[J]. 清华大学学报(自然科学版), 2022, 62(3): 427-437.
[5] 王靖瑶, 郑华青, 郭景华, 罗禹贡. 通信延迟下智能电动汽车队列分布式自适应鲁棒控制[J]. 清华大学学报(自然科学版), 2021, 61(9): 889-897.
[6] 田丰, 王立军, 隋立起, 曾远帆, 周星月, 田光宇. 电动汽车无同步器变速器换挡过程主动对齿控制[J]. 清华大学学报(自然科学版), 2020, 60(2): 101-108.
[7] 隋立起, 田丰, 李波, 曾远帆, 田光宇, 陈红旭. 考虑齿轮耦合振动的换挡过程非线性动力学分析[J]. 清华大学学报(自然科学版), 2020, 60(2): 109-116.
[8] 曾远帆, 陈红旭, 王立军, 田光宇, 周伟波. 无同步器的电机-变速器直连系统换挡过程建模与控制[J]. 清华大学学报(自然科学版), 2020, 60(11): 910-919.
[9] 台玉琢, 宋健, 卢正弘, 方圣楠, Nguyen Truong Sinh. 基于最优轨迹的两挡无动力中断变速器控制方法[J]. 清华大学学报(自然科学版), 2018, 58(4): 417-423.
[10] 张书玮, 冯桂璇, 樊月珍, 万爽, 罗禹贡. 基于信息交互的大规模电动汽车充电路径规划[J]. 清华大学学报(自然科学版), 2018, 58(3): 279-285.
[11] 谢海明, 林成涛, 刘涛, 田光宇, 黄勇. 增程式城市客车能量的分段跟踪优化方法[J]. 清华大学学报(自然科学版), 2017, 57(5): 476-482.
[12] NGUYEN Truong Sinh, 宋健, 方圣楠, 宋海军, 台玉琢, 李飞. 电动汽车动力保持型机械式自动两挡变速器仿真与试验[J]. 清华大学学报(自然科学版), 2017, 57(10): 1106-1113.
[13] 方圣楠, 宋健, 宋海军, 台玉琢, TRUONG Sinh Nguyen. 基于最优控制理论的电动汽车机械式自动变速器换档控制[J]. 清华大学学报(自然科学版), 2016, 56(6): 580-586.
[14] 陈洪昕, 崔健, 张佐, 姚丹亚. 基于自然语言处理的交通拥堵程度评价[J]. 清华大学学报(自然科学版), 2016, 56(3): 287-293.
[15] 陈红旭, 田光宇. 电机-变速器直连系统换挡过程建模及仿真[J]. 清华大学学报(自然科学版), 2016, 56(2): 144-151.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn