ZHANG Haiyan1,3,5, HU Hongliang2, WANG Yu1,6, JIANG Huajing4, GAN Hengqian1,3, HU Hao1, HUANG Shijie1
1. National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, China; 2. Jiangnan Institute of Mechanical and Electrical Design, Guiyang 550009, China; 3. Key Laboratory of FAST, Chinese Academy of Sciences, Beijing 100101, China; 4. Tejin Intelligent Technology Co., Shanghai 201112, China; 5. Hebei Key Laboratory of Radio Astronomy Technology, Shijiazhuang 050081, China; 6. University of Chinese Academy of Sciences, Beijing 100049, China
摘要针对500 m口径球面射电望远镜(five-hundred-meter aperture spherical radio telescope,FAST)电磁环境保护的需求,开展无线电干扰(radio frequency interference,RFI)智能监测技术研究,包括干扰信号的探测识别和干扰源的高精度定位技术。在干扰信号的探测与识别方面,针对FAST台址特性,采用多站点协同频谱感知技术来检测信号,并结合深度神经网络识别信号;在干扰源定位方面,采用基于到达时间差(time difference of arrival,TDOA)的定位技术,通过广义互相关法估计信号到达不同接收机的时间差,实现在低信噪比下的高精度定位。智能监测技术的研究为建立FAST无线电干扰智能监测系统打下基础,并将为FAST周边频谱管理和电磁环境保护工作提供支撑。
Abstract:Radio frequency interference (RFI) intelligent monitoring techniques are being developed for the electromagnetic environment of the five-hundred-meter aperture spherical radio telescope (FAST), including interference source classification and identification and high-precision localization. According to the characteristics of FAST sites, the interference detection and identification uses multi-site cooperative spectrum sensing and signal identification based on deep neural networks. The interference source localization uses time difference of arrival (TDOA) for accurate localization with low signal-to-noise ratios. The time difference between signals arriving at different receivers is estimated using the generalized mutual correlation method. This intelligent monitoring research lays the groundwork for the FAST radio interference intelligent monitoring system as well as the FAST spectrum management and electromagnetic environmental protection work.
[1] 胡浩, 张海燕, 黄仕杰. FAST电波环境保护措施[J]. 深空探测学报, 2020, 7(2):152-157. HU H, ZHANG H Y, HUANG S J. Protection measures of FAST radio environment[J]. Journal of Deep Space Exploration, 2020, 7(2):152-157. (in Chinese) [2] ZHANG H Y, WU M C, YUE Y L, et al. RFI measurements and mitigation for FAST[J]. Research in Astronomy and Astrophysics, 2020, 20(5):75. [3] KOSTYLEV V I. Energy detection of a signal with random amplitude[C]//2002 IEEE International Conference on Communications. New York, USA:IEEE, 2002:1606-1610. [4] 彭超然, 刁伟鹤, 杜振宇. 基于深度卷积神经网络的数字调制方式识别[J]. 计算机测量与控制, 2018, 26(8):222-226. PENG C R, DIAO W H, DU Z Y. Digital modulation recognition based on deep convolutional neural network[J]. Computer Measurement and Control, 2018, 26(8):222-226. (in Chinese) [5] KALPANA R, BASKARAN M. TAR:TOA-AOA based random transmission directed localization[J]. Wireless Personal Communications, 2016, 90(2):889-902. [6] YUCEK T, ARSLAN H. A survey of spectrum sensing algorithms for cognitive radio applications[J]. IEEE Communications Surveys and Tutorials, 2009, 11(1):116-130. [7] ZENG Y H, LIANG Y C, HOANG A T, et al. A review on spectrum sensing for cognitive radio:Challenges and solutions[J]. EURASIP Journal on Advances in Signal Processing, 2010, 2010:381465. [8] HE C W, YUAN Y B, TAN B F. Alternating direction method of multipliers for TOA-based positioning under mixed sparse LOS/NLOS environments[J]. IEEE Access, 2021, 9:28407-28412. [9] DIGHAM F F, ALOUINI M S, SIMON M K. On the energy detection of unknown signals over fading channels[J]. IEEE Transactions on Communications, 2007, 55(1):21-24. [10] MISHRA S M, SAHAI A, BRODERSEN R W. Cooperative sensing among cognitive radios[C]//2006 IEEE International Conference on Communications. Istanbul, Turkey:IEEE, 2006:1658-1663. [11] QUAN Z, CUI S G, SAYED A H. Optimal linear cooperation for spectrum sensing in cognitive radio networks[J]. IEEE Journal of Selected Topics in Signal Processing, 2008, 2(1):28-40. [12] FAN R F, JIANG H. Optimal multi-channel cooperative sensing in cognitive radio networks[J]. IEEE Transactions on Wireless Communications, 2010, 9(3):1128-1138. [13] YU H G, TANG W B, LI S Q. Optimization of cooperative spectrum sensing in multiple-channel cognitive radio networks[C]//2011 IEEE Global Telecommunications Conference-GLOBECOM 2011. Houston, USA:IEEE, 2012:1-5. [14] GABER A, OMAR A. A study of wireless indoor positioning based on joint TDOA and DOA estimation using 2-D matrix pencil algorithms and IEEE 802.11ac[J]. IEEE Transactions on Wireless Communications, 2015, 14(5):2440-2454. [15] KIM Y H, KIM D G, HAN J W, et al. Analysis of sensor-emitter geometry for emitter localisation using TDOA and FDOA measurements[J]. IET Radar, Sonar & Navigation, 2017, 11(2):341-349. [16] LI X L. On correcting the phase bias of GCC in spatially correlated noise fields[J]. Signal Processing, 2021, 180:107859. [17] DENG Z L, WANG H H, ZHENG X Y, et al. Base station selection for hybrid TDOA/RTT/DOA positioning in mixed LOS/NLOS environment[J]. Sensors, 2020, 20(15):4132.