Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (11): 1780-1788    DOI: 10.16511/j.cnki.qhdxxb.2022.26.030
  论文 本期目录 | 过刊浏览 | 高级检索 |
FAST无线电干扰智能监测技术
张海燕1,3,5, 胡宏亮2, 王钰1,6, 姜化京4, 甘恒谦1,3, 胡浩1, 黄仕杰1
1. 中国科学院 国家天文台, 北京 100101;
2. 江南机电设计研究所, 贵阳 550009;
3. 中国科学院 FAST重点实验室, 北京 100101;
4. 特金智能科技有限公司, 上海 201112;
5. 河北省射电天文技术重点实验室, 石家庄 050081;
6. 中国科学院大学, 北京 100049
RFI intelligent monitoring techniques for FAST
ZHANG Haiyan1,3,5, HU Hongliang2, WANG Yu1,6, JIANG Huajing4, GAN Hengqian1,3, HU Hao1, HUANG Shijie1
1. National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, China;
2. Jiangnan Institute of Mechanical and Electrical Design, Guiyang 550009, China;
3. Key Laboratory of FAST, Chinese Academy of Sciences, Beijing 100101, China;
4. Tejin Intelligent Technology Co., Shanghai 201112, China;
5. Hebei Key Laboratory of Radio Astronomy Technology, Shijiazhuang 050081, China;
6. University of Chinese Academy of Sciences, Beijing 100049, China
全文: PDF(9004 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 针对500 m口径球面射电望远镜(five-hundred-meter aperture spherical radio telescope,FAST)电磁环境保护的需求,开展无线电干扰(radio frequency interference,RFI)智能监测技术研究,包括干扰信号的探测识别和干扰源的高精度定位技术。在干扰信号的探测与识别方面,针对FAST台址特性,采用多站点协同频谱感知技术来检测信号,并结合深度神经网络识别信号;在干扰源定位方面,采用基于到达时间差(time difference of arrival,TDOA)的定位技术,通过广义互相关法估计信号到达不同接收机的时间差,实现在低信噪比下的高精度定位。智能监测技术的研究为建立FAST无线电干扰智能监测系统打下基础,并将为FAST周边频谱管理和电磁环境保护工作提供支撑。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张海燕
胡宏亮
王钰
姜化京
甘恒谦
胡浩
黄仕杰
关键词 FAST无线电干扰干扰源识别与定位    
Abstract:Radio frequency interference (RFI) intelligent monitoring techniques are being developed for the electromagnetic environment of the five-hundred-meter aperture spherical radio telescope (FAST), including interference source classification and identification and high-precision localization. According to the characteristics of FAST sites, the interference detection and identification uses multi-site cooperative spectrum sensing and signal identification based on deep neural networks. The interference source localization uses time difference of arrival (TDOA) for accurate localization with low signal-to-noise ratios. The time difference between signals arriving at different receivers is estimated using the generalized mutual correlation method. This intelligent monitoring research lays the groundwork for the FAST radio interference intelligent monitoring system as well as the FAST spectrum management and electromagnetic environmental protection work.
Key wordsFAST    radio frequency interference    interference identification and localization
收稿日期: 2021-11-26      出版日期: 2022-10-19
基金资助:国家重点研发计划项目(2019YFB1312704)
通讯作者: 王钰,博士,E-mail:wangy@nao.cas.cn      E-mail: wangy@nao.cas.cn
作者简介: 张海燕(1973-),女,研究员;胡宏亮(1985-),男,高级工程师。
引用本文:   
张海燕, 胡宏亮, 王钰, 姜化京, 甘恒谦, 胡浩, 黄仕杰. FAST无线电干扰智能监测技术[J]. 清华大学学报(自然科学版), 2022, 62(11): 1780-1788.
ZHANG Haiyan, HU Hongliang, WANG Yu, JIANG Huajing, GAN Hengqian, HU Hao, HUANG Shijie. RFI intelligent monitoring techniques for FAST. Journal of Tsinghua University(Science and Technology), 2022, 62(11): 1780-1788.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2022.26.030  或          http://jst.tsinghuajournals.com/CN/Y2022/V62/I11/1780
  
  
  
  
  
  
  
  
  
  
[1] 胡浩, 张海燕, 黄仕杰. FAST电波环境保护措施[J]. 深空探测学报, 2020, 7(2):152-157. HU H, ZHANG H Y, HUANG S J. Protection measures of FAST radio environment[J]. Journal of Deep Space Exploration, 2020, 7(2):152-157. (in Chinese)
[2] ZHANG H Y, WU M C, YUE Y L, et al. RFI measurements and mitigation for FAST[J]. Research in Astronomy and Astrophysics, 2020, 20(5):75.
[3] KOSTYLEV V I. Energy detection of a signal with random amplitude[C]//2002 IEEE International Conference on Communications. New York, USA:IEEE, 2002:1606-1610.
[4] 彭超然, 刁伟鹤, 杜振宇. 基于深度卷积神经网络的数字调制方式识别[J]. 计算机测量与控制, 2018, 26(8):222-226. PENG C R, DIAO W H, DU Z Y. Digital modulation recognition based on deep convolutional neural network[J]. Computer Measurement and Control, 2018, 26(8):222-226. (in Chinese)
[5] KALPANA R, BASKARAN M. TAR:TOA-AOA based random transmission directed localization[J]. Wireless Personal Communications, 2016, 90(2):889-902.
[6] YUCEK T, ARSLAN H. A survey of spectrum sensing algorithms for cognitive radio applications[J]. IEEE Communications Surveys and Tutorials, 2009, 11(1):116-130.
[7] ZENG Y H, LIANG Y C, HOANG A T, et al. A review on spectrum sensing for cognitive radio:Challenges and solutions[J]. EURASIP Journal on Advances in Signal Processing, 2010, 2010:381465.
[8] HE C W, YUAN Y B, TAN B F. Alternating direction method of multipliers for TOA-based positioning under mixed sparse LOS/NLOS environments[J]. IEEE Access, 2021, 9:28407-28412.
[9] DIGHAM F F, ALOUINI M S, SIMON M K. On the energy detection of unknown signals over fading channels[J]. IEEE Transactions on Communications, 2007, 55(1):21-24.
[10] MISHRA S M, SAHAI A, BRODERSEN R W. Cooperative sensing among cognitive radios[C]//2006 IEEE International Conference on Communications. Istanbul, Turkey:IEEE, 2006:1658-1663.
[11] QUAN Z, CUI S G, SAYED A H. Optimal linear cooperation for spectrum sensing in cognitive radio networks[J]. IEEE Journal of Selected Topics in Signal Processing, 2008, 2(1):28-40.
[12] FAN R F, JIANG H. Optimal multi-channel cooperative sensing in cognitive radio networks[J]. IEEE Transactions on Wireless Communications, 2010, 9(3):1128-1138.
[13] YU H G, TANG W B, LI S Q. Optimization of cooperative spectrum sensing in multiple-channel cognitive radio networks[C]//2011 IEEE Global Telecommunications Conference-GLOBECOM 2011. Houston, USA:IEEE, 2012:1-5.
[14] GABER A, OMAR A. A study of wireless indoor positioning based on joint TDOA and DOA estimation using 2-D matrix pencil algorithms and IEEE 802.11ac[J]. IEEE Transactions on Wireless Communications, 2015, 14(5):2440-2454.
[15] KIM Y H, KIM D G, HAN J W, et al. Analysis of sensor-emitter geometry for emitter localisation using TDOA and FDOA measurements[J]. IET Radar, Sonar & Navigation, 2017, 11(2):341-349.
[16] LI X L. On correcting the phase bias of GCC in spatially correlated noise fields[J]. Signal Processing, 2021, 180:107859.
[17] DENG Z L, WANG H H, ZHENG X Y, et al. Base station selection for hybrid TDOA/RTT/DOA positioning in mixed LOS/NLOS environment[J]. Sensors, 2020, 20(15):4132.
[1] 杨雅琴, 徐鹏, 吴细水. 基于Fast-MCD的自适应建模探索轨道不平顺劣化[J]. 清华大学学报(自然科学版), 2022, 62(3): 516-522.
[2] 吴若飞, 雷政, 杨磊, 王勇, 黄琳, 唐佳佳, 沈明, 郭安平, 甘仁波, 施小安, 李辉, 姚蕊. FAST望远镜设备的维护与保养[J]. 清华大学学报(自然科学版), 2022, 62(11): 1741-1750.
[3] 赵雅聪, 王启明. FAST索牵引并联机器人的动力学建模与仿真[J]. 清华大学学报(自然科学版), 2022, 62(11): 1772-1779.
[4] 殷家宁, 姜鹏, 陈明, 姚蕊. FAST索驱动并联机器人与Stewart平台结合的动力学建模方法[J]. 清华大学学报(自然科学版), 2022, 62(11): 1764-1771.
[5] 雷政, 姜鹏, 王启明. FAST促动器故障预测与健康管理系统[J]. 清华大学学报(自然科学版), 2022, 62(11): 1796-1802.
[6] 张宁远, 罗斌, 沈宇洲, 姜鹏, 李辉, 李庆伟. FAST索网大天顶角工况下结构响应分析[J]. 清华大学学报(自然科学版), 2022, 62(11): 1809-1815,1822.
[7] 张宁远, 罗斌, 沈宇洲, 姜鹏, 李辉, 李庆伟. FAST索网运行准实时评估系统研究与开发[J]. 清华大学学报(自然科学版), 2022, 62(11): 1816-1822.
[8] 李辉, 宋立强, 杨清阁, 李庆伟. FAST三角形反射面单元滑动故障与结构损伤的力学分析和改进方法[J]. 清华大学学报(自然科学版), 2022, 62(11): 1823-1832.
[9] 宋立强, 李辉, 杨磊, 杨清阁. FAST反射面单元质量评估算法及维护关键技术[J]. 清华大学学报(自然科学版), 2022, 62(11): 1833-1838.
[10] 何启嘉, 王启明, 李佳璇, 王正佳, 王通. 基于优势竞争网络的转运机器人路径规划[J]. 清华大学学报(自然科学版), 2022, 62(11): 1751-1757.
[11] 李庆伟, 李辉, 姜鹏, 姚蕊, 潘高峰. FAST馈源支撑钢索及舱索连接锚具役后剩余承载力研究[J]. 清华大学学报(自然科学版), 2022, 62(11): 1758-1763,1779.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn