Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2023, Vol. 63 Issue (3): 322-329    DOI: 10.16511/j.cnki.qhdxxb.2022.26.037
  论文 本期目录 | 过刊浏览 | 高级检索 |
帆片结构张满度变化对环帆伞气动性能的影响
高畅, 李岩军, 余莉, 聂舜臣
南京航空航天大学 飞行器环境控制与生命保障工业和信息化部重点实验室, 南京 210016
Effect of sail fullness on the aerodynamic performance of ringsail parachutes
GAO Chang, LI Yanjun, YU Li, NIE Shunchen
Key Laboratory of Aircraft Environment Control and Life Support, Ministry of Industry and Information Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
全文: PDF(13330 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 该文以某型环帆伞为研究对象,基于稳降状态下环帆伞的气动外形建立了伞衣绕流流场数值模型,通过对不同帆片排气方向下环帆伞尾流、伞衣缝射流和伞衣表面压力等进行研究,分析帆片结构对环帆伞减速及稳定性能的影响及其原理,在此基础上探究了张满度变化对环帆伞气动性能的影响。结果表明:向上排气结构环帆伞受通过月牙缝顺流气柱的作用,轴向阻力减小,但偏离平衡位置时伞衣获得恢复力矩,因此与向下排气伞衣相比,阻力系数减小,稳定性增强;随着帆片结构张满度的增加,向上排气伞衣阻力系数增大,向下排气伞衣阻力系数减小;2种排气方向的环帆伞均存在稳定性能最优的张满度值。研究结果对改进环帆伞设计提供了一定的理论参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高畅
李岩军
余莉
聂舜臣
关键词 环帆伞帆片结构张满度数值模拟气动性能    
Abstract:[Objective] Previous studies on ringsail parachutes based on computational fluid dynamics (CFD) mainly focused on the slotted structures of the canopy or the overall fabric permeability of ringsail parachutes. Ringsail parachutes with different sail structures, including the upward-exhaust ringsail (UER) and downward-exhaust ringsail (DER), are proposed to allow for different exhaust directions. Sail structures usually account for larger areas and are more complex; therefore, they have a more significant influence on the aerodynamics of parachutes. However, systematic research on the sail structures of ringsail parachutes is lacking. Therefore, the effect of sail structural designs on the deceleration performance of ringsail parachutes is unclear.[Method] In this study, the numerical models of the flow field around a parachute with different exhaust sail directions are established according to the aerodynamic shape of a ringsail parachute under steady descent. The influences of the sail exhaust direction and sail structure fullness on aerodynamic performance are explored via CFD. Wake, jet flow, and canopy surface pressure are explored, the deceleration and stability performances of parachutes with different sail exhaust directions are compared, and the action mechanism is analyzed. Sail fullness is varied as the main parameter, and the relationship between sail configurations and ringsail aerodynamics is analyzed.[Results] The results reveal the following:(1) Jet flow existed at crescent slots. In a UER parachute, jet flow converged in the downstream air column, which reduced the drag and generates an additional restoration moment on the parachute. Therefore, the UER featured smaller drag coefficients but better stabilities than the DER. (2) The UER was significantly affected by geometric permeability; therefore, with increasing sail fullness, the drag coefficient of the UER increased. The jet flow direction was determined by sail fullness. Therefore, under the effect of the reverse thrust of the jet flow, the drag coefficient of the DER decreased with increasing sail fullness. (3) Owing to the effect of the main tail vortex downstream of the canopy and the jet flow at the crescent slots of the sail, the UER and DER featured optimal fullness values for stability. (4) Considering the deceleration and stability performances of ringsail parachutes with different sail fullness values, the aerodynamic performance of ringsail parachutes was optimal at a sail fullness value of K=1.10.[Conclusions] Through the CFD-based numerical calculations of the steady descent states of ringsail parachutes, this study explores the effects of different exhaust directions and sail fullness on the aerodynamic performance of ringsail parachutes. Our research can provide a certain reference for the structural designs and performance analyses of ringsail parachutes.
Key wordsringsail parachute    sail structure    sail fullness    numerical simulation    aerodynamic characteristic
收稿日期: 2021-12-07      出版日期: 2023-03-04
基金资助:国家自然科学基金资助项目(11972192)
通讯作者: 余莉,教授,E-mail:yuli_happy@163.com      E-mail: yuli_happy@163.com
作者简介: 高畅(1996-),女,硕士研究生。
引用本文:   
高畅, 李岩军, 余莉, 聂舜臣. 帆片结构张满度变化对环帆伞气动性能的影响[J]. 清华大学学报(自然科学版), 2023, 63(3): 322-329.
GAO Chang, LI Yanjun, YU Li, NIE Shunchen. Effect of sail fullness on the aerodynamic performance of ringsail parachutes. Journal of Tsinghua University(Science and Technology), 2023, 63(3): 322-329.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2022.26.037  或          http://jst.tsinghuajournals.com/CN/Y2023/V63/I3/322
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] 王利荣. 降落伞理论与应用[M]. 北京:宇航出版社, 1997. WANG L R. The theory and application of parachutes[M]. Beijing:Astronautic Publishing House, 1997. (in Chinese)
[2] 余莉. 气动减速技术[M]. 北京:科学出版社, 2018. YU L. Aerodynamic deceleration technology[M]. Beijing:Science Press, 2018. (in Chinese)
[3] EWING E G. Ringsail parachute design[R]. Ohio:Air Force Flight Dynamics Laboratory, 1972.
[4] 林斌. 我国航天降落伞技术的发展[J]. 航天返回与遥感, 1999, 20(3):1-5. LIN B. Development of space parachute technology in China[J]. Spacecraft Recovery & Remote Sensing, 1999, 20(3):1-5. (in Chinese)
[5] 李健, 唐明章. "神舟八号"飞船主伞的改进设计与试验[J]. 航天返回与遥感, 2011, 32(6):26-32. LI J, TANG M Z. Improvement and tests of the Shenzhou-8 spacecraft main parachute[J]. Spacecraft Recovery & Remote Sensing, 2011, 32(6):26-32. (in Chinese)
[6] 荣伟, 王学, 贾贺, 等. "神舟号"飞船回收着陆系统可靠性分析中的几个问题[J]. 航天返回与遥感, 2011, 32(6):19-25. RONG W, WANG X, JIA H, et al. Some problems for reliability analysis of recovery and landing system of the Shenzhou spacecraft[J]. Spacecraft Recovery & Remote Sensing, 2011, 32(6):19-25. (in Chinese)
[7] 荣伟, 高树义, 李健, 等. 神舟飞船降落伞系统减速策略及其可靠性验证[J]. 中国科学:技术科学, 2014, 44(3):251-260. RONG W, GAO S Y, LI J, et al. The deceleration strategy and reliability validation of the parachute system on the Shenzhou spacecraft[J]. Scientia Sinica Technologica, 2014, 44(3):251-260. (in Chinese)
[8] 贾贺, 荣伟, 江长虹, 等. 探月三期月地高速再入返回器降落伞减速系统设计与实现[J]. 中国科学:技术科学, 2015, 45(2):185-192. JIA H, RONG W, JIANG C H, et al. The design and implementation of the parachute deceleration system on the circumlunar return and reentry spacecraft of 3rd phase of China lunar exploration program[J]. Scientia Sinica Technologica, 2015, 45(2):185-192. (in Chinese)
[9] TAKIZAWA K, MOORMAN C, WRIGHT S, et al. Fluid-structure interaction modeling and performance analysis of the Orion spacecraft parachutes[J]. International Journal for Numerical Methods in Fluids, 2011, 65(1-3):271-285.
[10] TEZDUYAR T E, SATHE S, SCHWAAB M, et al. Fluid-structure interaction modeling of ringsail parachutes[J]. Computational Mechanics, 2008, 43(1):133-142.
[11] TAKIZAWA K, SPIELMAN T, MOORMAN C, et al. Fluid-structure interaction modeling of spacecraft parachutes for simulation-based design[J]. Journal of Applied Mechanics, 2012, 79(1):1-9.
[12] 甘和麟, 荣伟. 环帆伞可变参数对设计偏差的灵敏度分析[J]. 航天返回与遥感, 2014, 35(2):14-24. GAN H L, RONG W. Alternative-parameter sensitivity ofringsail parachute design deviation[J]. Spacecraft Recovery &Remote Sensing, 2004, 35(2):14-24. (in Chinese)
[13] 高树义, 余莉. 环帆伞收口比对开伞性能的影响[J]. 中国空间科学技术, 2014, 34(1):63-70. GAO S Y, YU L. Influence of reefing ratio on inflation performance of ringsail parachute[J]. Chinese Space Science and Technology, 2014, 34(1):63-70. (in Chinese)
[14] COCKRELL D, HUNTLEY I, AYRES R. Aerodynamic and inertial forces on model parachute canopies[C]//Proceedings of the 5th Aerodynamic Deceleration Systems Conference. Albuquerque, USA:AIAA, 1975:1371.
[15] LAFARGE R A, NELSEN J M, GWINN K W. A novelCFD/structural analysis of a cross parachute[C]//Proceedings of the 32nd Aerospace Sciences Meeting and Exhibit. Reno, USA:AIAA, 1994:752.
[16] GNOFFO P A. Computational aerothermodynamics in aeroassist applications[J]. Journal of Spacecraft and Rockets, 2003, 40(3):305-312.
[17] BENNEY R J, STEIN K R, TEZDUYAR T E, et al. Fluid-structure interaction modeling of the US army personnel parachute system[C]//Proceedings of Modeling and Simulation Technologies Conference. Denver, USA:AIAA, 2000:4531.
[18] GREATHOUSE J S, SCHWING A M. Study of geometric porosity on static stability and drag using computational fluid dynamics for rigid parachute shapes[C]//Proceedings of the 23rd AIAA Aerodynamic Decelerator Systems Technology Conference. Daytona Beach, USA:AIAA, 2015:2131.
[19] 贾贺, 姜璐璐, 薛晓鹏, 等. 超声速透气降落伞系统的气动干扰数值模拟研究[J]. 航天返回与遥感, 2019, 40(6):26-34. JIA H, JIANG L L, XUE X P, et al. Numerical simulation of aerodynamic interaction of supersonic porosity parachutes[J]. Spacecraft Recovery & Remote Sensing, 2019, 40(6):26-34. (in Chinese)
[20] 杨雪, 余莉, 李允伟, 等. 环帆伞稳降阶段织物透气性影响数值模拟[J]. 空气动力学学报, 2015, 33(5):714-719. YANG X, YU L, LI Y W, et al. Numerical simulation of the effect of the permeability on the ringsail parachute in terminal descent stage[J]. Acta Aerodynamica Sinica, 2015, 33(5):714-719. (in Chinese)
[1] 李玉, 王相钦, 闵敬春. 蛇形管内燃油变物性流动换热特性数值模拟[J]. 清华大学学报(自然科学版), 2024, 64(2): 337-345.
[2] 石云姣, 赵宁波, 郑洪涛. 进气畸变对重型燃气轮机燃压缸流动特性影响[J]. 清华大学学报(自然科学版), 2024, 64(1): 90-98.
[3] 李聪健, 高航, 刘奕. 基于数值模拟和机器学习的风场快速重构方法[J]. 清华大学学报(自然科学版), 2023, 63(6): 882-887.
[4] 钟茂华, 胡鹏, 陈俊沣, 程辉航, 吴乐, 魏旋. 顶部多点竖向排烟下地铁隧道烟气控制研究[J]. 清华大学学报(自然科学版), 2023, 63(5): 754-764.
[5] 孙继昊, 罗绍文, 赵宁波, 杨慧玲, 郑洪涛. 甲烷/空气燃烧NOx排放数值模型对比[J]. 清华大学学报(自然科学版), 2023, 63(4): 623-632.
[6] 孙逸凡, 朱炜, 吴玉新, 祁海鹰. Gao-Yong湍流模型对边界层转捩的适用性研究[J]. 清华大学学报(自然科学版), 2023, 63(4): 642-648.
[7] 陈冠华, 陈雅倩, 周宁, 贾贺, 荣伟, 薛晓鹏. 具有横向运动能力的圆形伞的设计[J]. 清华大学学报(自然科学版), 2023, 63(3): 338-347.
[8] 吴卓, 张文博, 王治国, 冯佳瑞, 任雅丽. 一种大型冲压式翼伞的设计与试验[J]. 清华大学学报(自然科学版), 2023, 63(3): 348-355.
[9] 闫慧慧, 李昊昱, 周伯豪, 张煜洲, 兰旭东. 离心压气机性能影响机理研究及优化[J]. 清华大学学报(自然科学版), 2023, 63(10): 1672-1685.
[10] 高群翔, 孙琦, 彭威, 张平, 赵钢. 碘硫循环制氢中硫酸分解的全过程模拟方法[J]. 清华大学学报(自然科学版), 2023, 63(1): 24-32.
[11] 史琳, 许强辉. 稠油注空气开发技术的基础研究与应用[J]. 清华大学学报(自然科学版), 2022, 62(4): 722-734.
[12] 何鑫, 薛瑞, 郑星, 张骞, 龚建良. 边界层燃烧在超燃冲压发动机内的摩擦减阻特性[J]. 清华大学学报(自然科学版), 2022, 62(3): 562-572.
[13] 闫慧慧, 周伯豪, 李豪, 张煜洲, 兰旭东. 基于ANSYS的涡轴发动机压气机设计[J]. 清华大学学报(自然科学版), 2022, 62(3): 549-554,580.
[14] 张旨晗, 刘辉, 吕振雷, 侯岩松, 孙立风, 王石, 吴朝霞, 刘亚强. 大动物SPECT系统设计与数值模拟[J]. 清华大学学报(自然科学版), 2022, 62(12): 1875-1883.
[15] 韩亚东, 谭磊, 刘亚斌. 基于可控载荷的混流泵叶轮设计及试验研究[J]. 清华大学学报(自然科学版), 2022, 62(12): 1930-1937.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn