Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2023, Vol. 63 Issue (3): 394-405    DOI: 10.16511/j.cnki.qhdxxb.2022.26.041
  论文 本期目录 | 过刊浏览 | 高级检索 |
空间充气式返回器气动弹性动力响应特征
张章1, 吴杰2, 赵淼1, 王奇1, 刘宇1
1. 北京空间机电研究所 航天进入减速与着陆技术实验室, 北京 100094;
2. 北京航空航天大学 能源与动力工程学院, 北京 100083
Aeroelastic dynamic response of the inflatable space reentry aeroshell
ZHANG Zhang1, WU Jie2, ZHAO Miao1, WANG Qi1, LIU Yu1
1. Laboratory of Aerospace Entry, Descent and Landing Technology, Beijing Institute of Space Mechanics & Electricity, Beijing 100094, China;
2. School of Energy and Power Engineering, Beihang University, Beijing 100083, China
全文: PDF(14047 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 针对空间充气式返回器在超声速流场下的气动弹性动力响应问题,该文建立了一种考虑内充压气体作用的流固耦合模型,较已有方法更真实地揭示了空间再入柔性充气结构变形对流场的影响;同时,采用六自由度飞行动力学对超声速阶段的飞行轨迹进行了修正,有效实现了飞行动力学和气体动力学之间的双向耦合。研究表明:超声速工况下,飞行器在小于50°攻角时的俯仰力矩导数为负,其结构有维持静稳定状态的能力;飞行器在超声速流场中会产生剧烈的振动,本质为大尺度湍流尾迹作用下的抖振效应,而这一现象在跨声速及非对称来流的情况下更加严重,有诱发结构产生低频共振的风险。该研究为空间充气式返回器在超声速条件下的结构安全性设计与评估提供了参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张章
吴杰
赵淼
王奇
刘宇
关键词 充气式返回器超声速流场气动弹性动力响应流固耦合内充压气体    
Abstract:[Objective] As an emerging space return technology, the inflatable reentry vehicle provides a new technical approach to deep space exploration, recovery of target spacecraft, and freight transport of space products. The inflatable reentry vehicle faces severe aerodynamic load impact, and many structural safety failures have been induced by the aeroelastic effect in actual test flights. However, the existing structural finite element models for inflatable reentry vehicles do not fully consider the inflation gas mechanism and material nonlinearity and cannot accurately describe the nonlinear structural dynamic characteristics of flexible inflatable structures. The defect of the low fluid-solid coupling degree also exists in the aeroelastic system, and how the inflation gas participates in the process of coupling is unclear. The limitations of existing methods impede reasonably revealing the aeroelastic characteristics under the influence of external high-speed flow and internal inflation gas during reentry.[Methods] Aimed at the aeroelastic dynamic response of the inflatable space reentry aeroshell in supersonic and transonic flows, a fluid-solid coupling model considering inflation gas is established in this paper, which also considers the influence of structural deformation on the flow field more than existing methods, and the LES can effectively describe the flow field with strong separation characteristics. Meanwhile, the six-DOF flight dynamics are used to modify the flight trajectory in the supersonic stage, and the two-way coupling between flight dynamics and aerodynamics is effectively realized. The proposed method can reveal the dynamic response characteristics under the action of large aerodynamic force and inflation gas, which is closer to the physical essence of aeroelasticity.[Results] The results indicate that the vehicle will vibrate violently in the transonic and supersonic flow fields, which is essentially the buffeting effect under the action of large-scale turbulent wake vortices. Under a Ma 0.8 flight condition with the most severe airflow pulsation, the axial and pitching vibration amplitudes of the vehicle reach 40 mm and 67 mm, respectively. The frequencies of airflow pulsation and structural vibration are relatively low, leading to a potential risk of inducing resonance with the natural frequency of the vehicle. Under transonic and supersonic conditions, the aerodynamic moment derivative of the vehicle is negative when the attack angle is less than 50°, and the structure can maintain static stability.[Conclusions] According to the calculation results of the aeroelastic dynamic response, the amplitude of the structure also converges after the release under an attack angle of 17°, which further confirms that the aerodynamic instability will not be severe. In the transonic and supersonic regions, with decreasing Mach number, the Reynolds number and inertia force increase continuously. Because of the increase in inertia force, the separation point at the shoulder moves forward, and the position of the shear layer moves outward, which increases the wake width and enhances the vibrational amplitude of the structure. When the attack angle exists, the increase in flow mixing due to asymmetric flow in the upper and lower half regions is the main reason for the increase in the unsteady degree of wake and the vibrational amplitude. This research provides a valuable reference for inflatable space reentry aeroshell structure safety design and evaluation under transonic and supersonic flows.
Key wordsinflatable reentry aeroshell    supersonic flow    aeroelastic dynamic response    fluid-structure interaction    inflation gas
收稿日期: 2021-12-24      出版日期: 2023-03-04
基金资助:国家自然科学基金资助项目(11602018)
作者简介: 张章(1986-),男,高级工程师。E-mail:xiaodanni198649@sina.com
引用本文:   
张章, 吴杰, 赵淼, 王奇, 刘宇. 空间充气式返回器气动弹性动力响应特征[J]. 清华大学学报(自然科学版), 2023, 63(3): 394-405.
ZHANG Zhang, WU Jie, ZHAO Miao, WANG Qi, LIU Yu. Aeroelastic dynamic response of the inflatable space reentry aeroshell. Journal of Tsinghua University(Science and Technology), 2023, 63(3): 394-405.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2022.26.041  或          http://jst.tsinghuajournals.com/CN/Y2023/V63/I3/394
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] TAKAHASHI Y, MATSUNAGA M, OSHIMA N, et al. Drag behavior of inflatable reentry vehicle in transonic regime[J]. Journal of Spacecraft and Rockets, 2019, 56(2):577-585.
[2] TAKAHASHI Y, HA D, OSHIMA N, et al. Aerodecelerator performance of flare-type membrane inflatable vehicle in suborbital reentry[J]. Journal of Spacecraft and Rockets, 2017, 54(5):993-1004.
[3] SUBRAHMANYAM P, RASKY D. Entry, descent, and landing technological barriers and crewed mars vehicle performance analysis[J]. Progress in Aerospace Sciences, 2017, 91(5):1-26.
[4] 卫剑征, 谭惠丰, 王伟志, 等. 充气式再入减速器研究最新进展[J]. 宇航学报, 2013, 34(7):881-890. WEI J Z, TAN H F, WANG W Z, et al. New trends in inflatable re-entry aeroshell[J]. Journal of Astronautics, 2013, 34(7):881-890. (in Chinese)
[5] OHASHI T, TAKAHASHI Y, TERASHIMA H, et al. Aerodynamic instability of flare-type membrane inflatable vehicle in suborbital reentry demonstration[J]. Journal of Fluid Science and Technology, 2018, 13(3):JFST0020.
[6] MURMAN S M. Dynamic simulations of inflatable aerodynamic decelerator concepts[C]//Proceedings of the 20th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Seattle, USA:AIAA, 2009:1-12.
[7] DOLLAH N A, SAAD M R, CHEIDRIS A. Inflatable structure for aerospace application:Historical perspective and future outlook[J]. Journal of Fundamental and Applied Sciences, 2017, 9(S3):317-334.
[8] WU J, HOU A P, ZHANG Z, et al. Nonlinear structural dynamics of the inflatable re-entry vehicle experiment (IRVE)[C]//Proceedings of the 22nd AIAA International Space Planes and Hypersonics Systems and Technologies Conference. Orlando, USA:AIAA, 2018:1-16.
[9] YAMADA K, ABE T, SUZUKI K, et al. Deployment and flight test of inflatable membrane aeroshell using large scientific balloon[C]//Proceedings of the 21st AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Dublin, Ireland:AIAA, 2011:1-12.
[10] YAMADA K, NAGATA Y, ABE T, et al. Suborbital reentry demonstration of inflatable flare-type thin-membrane aeroshell using a sounding rocket[J]. Journal of Spacecraft and Rockets, 2015, 52(1):275-284.
[11] WANG R, HOU A P, NIU Y H. The optimal design and analysis of the IRDT system based on two-dimensional ballistic trajectory in atmosphere reentry[C]//Proceedings of the 20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Glasgow, UK:AIAA, 2015:1-10.
[12] LITTEKEN D A. Inflatable technology:Using flexible materials to make large structures[C]//Electroactive Polymer Actuators and Devices XXI. Denver, USA:SPIE, 2019:1-11.
[13] HOLLIS B R. Surface heating and boundary-layer transition on a hypersonic inflatable aerodynamic decelerator[J]. Journal of Spacecraft and Rockets, 2018, 55(4):856-876.
[14] 高艺航, 贺卫亮. 充气式返回舱气动热特性研究[J]. 航天返回与遥感, 2014, 35(4):17-25. GAO Y H, HE W L. Research on aerodynamic heating characteristics of inflatable reentry decelerator[J]. Spacecraft Recovery & Remote Sensing, 2014, 35(4):17-25. (in Chinese)
[15] 许家裕. 充气式返回飞行器的结构动态特性分析[D]. 哈尔滨:哈尔滨工业大学, 2012. XU J Y. Stractural dynamic characteristics analysis of inflatable re-entry vehicle[D]. Harbin:Harbin Institute of Technology, 2012. (in Chinese)
[16] LIN L, GONYEA K C, BRAUN R D. Finite element analysis of the inflatable re-entry vehicle experiment[C]//Proceedings of the 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Kissimmee, USA:AIAA, 2015:1-13.
[17] ALIFANOV O M, MEDVEDSKIY A L, TERENTYEV V V, et al. Design experience of a demonstrator descent vehicle introducing aeroelastic deployable structural elements to space engineering[J]. Solar System Research, 2018, 52(7):590-596.
[18] KORYANOV V V, ALIFANOV O M, NEDOGAROK A A, et al. Review of the technologies for development the inflatable brake device for deorbiting the space objects[J]. AIP Conference Proceedings, 2021, 2318(1):1-10.
[19] BAGINSKI F, BRAKKE K. Stability of the axisymmetric state of a pneumatic envelope with applications to tensioncone inflatable aerodynamic decelerators[C]//52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 19th AIAA/ASME/AHS Adaptive Structures Conference. Denver, USA:AIAA, 2011:1-17.
[20] LINDELL M C, HUGHES S J, DIXON M, et al. Structural analysis and testing of the inflatable re-entry vehicle experiment (IRVE)[C]//Proceedings of the 47th AIAA/ASME/ASCE/AHS/ASCStructures, Structural Dynamics, and Materials Conference. Newport, USA:AIAA, 2006:1-19.
[21] MOSS J N, GLASS C E, HOLLIS B R, et al. Low-density aerodynamics for the inflatable reentry vehicle experiment[J]. Journal of Spacecraft and Rockets, 2006, 43(6):1191-1201.
[1] 杨林清, 秦本科, 薄涵亮. 结合部耦合的能量分析方法[J]. 清华大学学报(自然科学版), 2023, 63(5): 840-848.
[2] 王奇, 蒋伟, 王文强, 雷江利, 张章, 赵淼. 材料弹性对降落伞充气展开力学性能影响[J]. 清华大学学报(自然科学版), 2023, 63(3): 356-366.
[3] 项冲, 龙伟漾, 郭飞, 张新异, 蒋杰. 盾构主驱动密封性能流固耦合仿真[J]. 清华大学学报(自然科学版), 2023, 63(1): 71-77.
[4] 黄伟峰, 潘晓波, 王子羲, 郭飞, 刘莹, 李永健, 刘向锋. 上游泵送机械密封热流固耦合建模与性能分析[J]. 清华大学学报(自然科学版), 2020, 60(7): 603-610.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn