Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2023, Vol. 63 Issue (1): 104-113    DOI: 10.16511/j.cnki.qhdxxb.2022.26.042
  核能与新能源工程 本期目录 | 过刊浏览 | 高级检索 |
含分布式内热源复合平板等效导热系数模型
刘子平, 孙俊
清华大学 核能与新能源技术研究院, 北京 100084
An effective thermal conductivity model of composite plates with distributed inner heat sources
LIU Ziping, SUN Jun
Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
全文: PDF(1502 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 复合材料广泛应用于能源工业等诸多领域,其等效导热系数是预测复合材料温度分布的关键参数。现有复合材料等效导热系数模型的分析对象大多不含内热源,对于核反应堆燃料等含分布式内热源复合材料的等效导热系数的研究还不够深入。该文针对含分布式内热源两相复合平板的导热问题,推导了预测其平均温度的等效导热系数理论模型,通过与无内热源情况对比,分析了内热源分布等因素的影响规律。将内热源随机分布对平均温度的影响分解为均匀分布加扰动的形式,分析了内热源偏离均匀分布时对等效导热系数的影响。结果表明:在一定条件下(如内热源分布较分散),内热源非均匀分布对平均温度的影响较小。研究结果可为今后研究核反应堆燃料的等效导热系数奠定基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘子平
孙俊
关键词 等效导热系数复合平板分布式内热源平均温度核燃料    
Abstract:Composite materials are widely used in several fields, such as energy industry. Composite materials have complex geometric structures and are usually equivalent to homogeneous materials in the process of thermal design, and then use an effective thermal conductivity model to describe the heat transfer process. Traditional methods for analyzing the effective thermal conductivity of composite materials are typically based on Fourier's law by applying a constant heat flow at both sides of the material to conserve the heat flows of the real and equivalent uniform materials. For composite materials with internal heat sources, such as nuclear fuel, the value and direction of the internal heat flow are affected by the distribution of heat sources; therefore, the method based on Fourier's law will be unsuitable for analyzing the effective thermal conductivity of such materials. To explore the influence of distributed inner heat sources on the effective thermal conductivity of composite materials, this study considers an infinite two-phase composite plate as the research object. The difference between the effective thermal conductivities with and without the inner heat sources is analyzed, and the effective thermal conductivity model is established for predicting the average temperature of the composite plate with inner heat sources. The influence of the distribution of inner heat sources on the effective thermal conductivity is analyzed. Furthermore, the influence of randomly distributed inner heat sources on effective thermal conductivity is quantified. Results show that the effective thermal conductivity for predicting the average temperature of the composite plate with inner heat sources is not affected by the size of the heat sources but by the locations of each heat-generating filling plate, i.e., the distribution of the inner heat sources. Additionally, it is affected by the number and size of the filling plates. The deviation in the effective thermal conductivities when the filling plates are randomly and uniformly distributed can be approximated as a normal distribution, and that for uniformly distributed filling plates is approximately equal to the highest probability case for the randomly distributed plates. The deviation of the effective thermal conductivity for the randomly and uniformly distributed filling plates decreases with the increasing number of plates (i.e., the more dispersed heat source distribution). The effective thermal conductivity of the composite plate with inner heat sources depends on more factors than the plate with no inner heat source, including the number and size of the filling plates and the distribution of the inner heat sources. The effective thermal conductivity of composite flat plate with randomly distributed heat generating plates is approximately same as that when they are uniformly distributed. The ideas and methods present in this study lay the foundation for future research on the effective thermal conductivity of nuclear reactor fuel.
Key wordseffective thermal conductivity    composite plate    distributed inner heat sources    average temperature    nuclear reactor fuel
收稿日期: 2021-12-21      出版日期: 2023-01-11
基金资助:孙俊,副教授,E-mail:sunjun@tsinghua.edu.cn
引用本文:   
刘子平, 孙俊. 含分布式内热源复合平板等效导热系数模型[J]. 清华大学学报(自然科学版), 2023, 63(1): 104-113.
LIU Ziping, SUN Jun. An effective thermal conductivity model of composite plates with distributed inner heat sources. Journal of Tsinghua University(Science and Technology), 2023, 63(1): 104-113.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2022.26.042  或          http://jst.tsinghuajournals.com/CN/Y2023/V63/I1/104
  
  
  
  
  
  
[1] 陈光, 崔崇. 新材料概论[M]. 北京: 科学出版社, 2003. CHEN G, CUI C. Introduction to new materials [M]. Beijing: Science Press, 2003. (in Chinese)
[2] MUTHULAKSHMI B, RAO C H, SHARMA S V. Application of non-woven aramid-polyimide composite materials for high reliability printed circuit boards for use in spacecraft electronics [J]. Materials Today: Proceedings, 2021, 40: S254-S257.
[3] WANG H, ZHANG Y, CI E D, et al. An experimental study in full spectra of solar-driven magnesium nitrate hexahydrate/graphene composite phase change materials for solar thermal storage applications [J]. Journal of Energy Storage, 2021, 38: 102536.
[4] CAI W L, LI K, JIANG K, et al. Utilization of high-sulfur-containing petroleum coke for making sulfur-doped porous carbon composite material and its application in supercapacitors [J]. Diamond and Related Materials, 2021, 116: 108380.
[5] 李小川, 施明恒, 张东辉. 非均匀多孔介质有效热导率分析[J]. 工程热物理学报, 2006, 27(4): 644-646. LI X C, SHI M H, ZHANG D H. Analysis of effective thermal conductivity for non-uniform porous media [J]. Journal of Engineering Thermophysics, 2006, 27(4): 644-646. (in Chinese)
[6] DEISSLER R G, BOEGLI J S. An investigation of effective thermal conductivities of powders in various gases [J]. Journal of Fluids Engineering, 1958, 80(7): 1417-1423.
[7] MAXWELL C J. A treatise on electricity and magnetism [M]. Oxford: Clarendon Press, 1873.
[8] MAILLET D, ANDRÉ S, BATSALE J C, et al. Thermal quadrupoles: Solving the heat equation through integral transforms [M]. Chichester: Wiley, 2000.
[9] LIU Z P, JI Y, ZHANG H, et al. Numerical calculations of the effective thermal conductivity of the dispersion fuel sphere with the internal heat sources [C]//International Conference on Nuclear Engineering. New York, USA: American Society of Mechanical Engineers, 2021: V002T07A027.
[10] LIU M L, LEE Y, RAO D V. Development of effective thermal conductivity model for particle-type nuclear fuels randomly distributed in a matrix [J]. Journal of Nuclear Materials, 2018, 508: 168-180.
[11] LIU M L, THURGOOD J, LEE Y, et al. Development of a two-regime heat conduction model for TRISO-based nuclear fuels [J]. Journal of Nuclear Materials, 2019, 519: 255-264.
[12] 刘子平, 孙俊. 含内热源复合平板等效导热系数研究[J]. 哈尔滨工程大学学报, 2021, 42(12): 1832—1836, 1842. LIU Z P, SUN J. Research on the equivalent thermal conductivity coefficient of a composite plate with inner heat sources [J]. Journal of Harbin Engineering University, 2021, 42(12): 1832—1836, 1842. (in Chinese)
[13] BERNSTEIN D S. Matrix mathematics: Theory, facts, and formulas with application to linear systems theory [M]. Princeton: Princeton University Press, 2005.
[1] 史力, 赵加清, 刘兵, 李晓伟, 雒晓卫, 张征明, 张平, 孙立斌, 吴莘馨. 高温气冷堆关键材料技术发展战略[J]. 清华大学学报(自然科学版), 2021, 61(4): 270-278.
[2] 严强, 徐超, 陈靖. 先进核燃料循环中基于二硫代次膦酸配体的三价镧锕分离研究:从基础化学到流程开发[J]. 清华大学学报(自然科学版), 2021, 61(4): 312-321.
[3] 任成, 杨星团, 李聪新, 孙艳飞, 刘志勇. 高温气冷堆球床等效导热系数实验装置模拟计算[J]. 清华大学学报(自然科学版), 2015, 55(9): 991-997.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn