Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2023, Vol. 63 Issue (1): 71-77    DOI: 10.16511/j.cnki.qhdxxb.2022.26.043
  机械工程 本期目录 | 过刊浏览 | 高级检索 |
盾构主驱动密封性能流固耦合仿真
项冲1, 龙伟漾2, 郭飞1, 张新异2, 蒋杰1
1. 清华大学 机械工程系, 摩擦学国家重点实验室, 北京 100084;
2. 中铁工程装备集团有限公司, 郑州 450000
Fluid-structure interaction simulation of sealing shield main drive seal properties
XIANG Chong1, LONG Weiyang2, GUO Fei1, ZHANG Xinyi2, JIANG Jie1
1. State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China;
2. China Railway Engineering Equipment Group Co., Ltd., Zhengzhou 450000, China
全文: PDF(6647 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 该文针对盾构主驱动密封唇口开启,通过反向介质流动实现密封效果的特殊工作原理,建立了一种流固耦合(fluid-structure interaction,FSI)计算方法。该方法基于固体力学有限元计算方法及计算流体动力学(computational fluid dynamics,CFD),通过互相传输变形、压力数据,解决了传统双向FSI在材料超弹性特性、两相流和非Newton流体等复杂计算条件下的不收敛问题,并通过试验验证了该方法的有效性。计算结果表明:初始密封间隙较大时,由于第2道腔室(P2)内油脂压降较大,不会产生回流现象;主驱动密封在设计参数下随着流动逐渐达到稳态且唇形密封不再产生变形时,第1道腔室(P1)油脂有向P2回流的趋势,但是最终不产生回流现象,这对密封失效分析具有重要指导意义。该FSI模型及结论为主驱动密封的密封结构性能研究提供了理论基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
项冲
龙伟漾
郭飞
张新异
蒋杰
关键词 盾构主驱动密封流固耦合两相流非Newton流体    
Abstract:The shield main drive seal is composed of a labyrinth seal and four lip seals. The use process of the first seal of the shield machine main drive includes multiple stages. The lip seal will be greatly deformed during assembly and pressurization. Therefore, the sealing leakage process is actually a two-way fluid-structure interaction (FSI) process. However, the traditional two-way FSI finite element method must have a continuous flow field because the current dynamic mesh technology cannot solve the problem of the topological filling of the discontinuous flow field. In the initial interference assembly condition of the shield main drive seal, the seal flow fields are independent of each other, which makes the leakage simulation calculation process extremely complicated. Furthermore, the deformation process of the main drive seal under the fluid pressure difference not only involves a flow field calculation under large deformation but also includes complex calculation conditions such as the hyperelasticity of the main drive seal, two-phase flow, and non-Newtonian fluids. To analyze the leakage characteristics of the shield main drive sealing system, an FSI calculation method is established. The method is based on Abaqus and Fluent, and it can solve complex calculation conditions such as the hyperelasticity of the main drive seal, two-phase flow, and non-Newtonian fluids. First, the method calculated the assembly process of the sealing ring by Abaqus and given the initial boundary pressure on both sides of the sealing ring to make the clearance slightly open, which is the precondition for calculating the flow field. Second, we extracted the deformed solid model and rebuild the model. Then, the deformed model was used to calculate the flow field in Fluent, and when the flow field reaches a steady state, the fluid pressure on both sides of the sealing ring was collected. Because the grease flows slowly, the dynamic pressure and static pressure differ by an order of magnitude, so the calculation used static pressure in this paper. Then, the flow field pressure was transferred to the solid model, and the deformation of the seal ring was recalculated by Abaqus. Finally, the above calculation process was repeated until the calculation results of the two models converge. The shield main drive sealing experimental system is built, and the effectiveness of the method is experimentally verified. Through the calculation and analysis, it is concluded that when the initial sealing gap is large, the backflow will not produce because of the large pressure drop of the grease in the second chamber. Under the design parameters, the flow gradually reaches a steady state, and the seal is no longer deformed. The grease in the first chamber tends to flow back to the second chamber, but finally, the backflow phenomenon is not produced. A complete simulation calculation method is proposes for the study field of shield main drive sealing. The FSI model and results provide a theoretical basis and reference for research on the sealing structure performance of the main drive seal.
Key wordsshield main drive seal    fluid-structure interaction    two-phase flow    non-Newtonian fluid
收稿日期: 2022-06-17      出版日期: 2023-01-11
基金资助:郭飞,助理研究员,E-mail:guof2014@tsinghua.edu.cn
引用本文:   
项冲, 龙伟漾, 郭飞, 张新异, 蒋杰. 盾构主驱动密封性能流固耦合仿真[J]. 清华大学学报(自然科学版), 2023, 63(1): 71-77.
XIANG Chong, LONG Weiyang, GUO Fei, ZHANG Xinyi, JIANG Jie. Fluid-structure interaction simulation of sealing shield main drive seal properties. Journal of Tsinghua University(Science and Technology), 2023, 63(1): 71-77.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2022.26.043  或          http://jst.tsinghuajournals.com/CN/Y2023/V63/I1/71
  
  
  
  
  
  
  
  
  
  
  
  
[1] 王林涛, 钭婧, 孙开欣, 等. 正常状态下盾尾密封油脂腔压力分布特性研究[J]. 现代机械, 2021(4): 29-37. WANG L T, DOU J, SUN K X, et al. Pressure distribution characteristics of shield tail sealing grease cavity under normal conditions [J]. Modern Machinery, 2021(4): 29-37. (in Chinese)
[2] 张中华, 郑军, 任阳, 等. 盾构主驱动密封优化研究[J]. 隧道建设(中英文), 2021, 41(6): 1065-1070. ZHANG Z H, ZHENG J, REN Y, et al. Optimization of main drive seals in shields [J]. Tunnel Construction, 2021, 41(6): 1065-1070. (in Chinese)
[3] 王龙. 盾构机主驱动密封系统分析与状态检测[D]. 石家庄: 石家庄铁道大学, 2016. WANG L. Shield machine lord drive seal state of system analysis and detection [D]. Shijiazhuang: Shijiazhuang Tiedao University, 2016. (in Chinese)
[4] 姚平. 某盾构主驱动密封系统失效原因分析[J]. 建筑机械化, 2021, 42(8): 29-32. YAO P. Analysis of the reasons for main drive sealing system failure of a shield tunneling machine [J]. Construction Mechanization, 2021, 42(8): 29-32. (in Chinese)
[5] 高伟贤, 邓立营, 张瑞临. 盾构机主轴承密封结构研究[J]. 矿山机械, 2008, 36(13): 21-23. GAO W X, DENG L Y, ZHANG R L, et al. Research on the seal structure of main bearing for TBM [J]. Mining & Processing Equipment, 2008, 36(13): 21-23. (in Chinese)
[6] 孙丹, 丁海洋, 李国勤, 等. 基于流固耦合的刷式密封泄漏特性理论与实验[J]. 航空动力学报, 2019, 34(7): 1519-1529. SUN D, DING H Y, LI G Q, et al. Theory and experiment on the leakage characteristics of brush seals based on fluid-structure interaction [J]. Journal of Aerospace Power, 2019, 34(7), 1519-1529. (in Chinese)
[7] ČANIĆ S, GALÍ M, LJULJ M, et al. Analysis of a linear 3D fluid-mesh-shell interaction problem [J]. Zeitschrift für Angewandte Mathematik und Physik, 2019, 70(2): 44.
[8] 郑峥, 张茜, 亢一澜. 盾构装备掘进总推力的反演识别与力学建模[J]. 机械工程学报, 2014, 50(21): 31-37. ZHENG Z, ZHANG Q, KANG Y L. Inverse identification and mechanical modeling of total thrust on shield tunneling machine [J]. Journal of Mechanical Engineering, 2014, 50(21): 31-37. (in Chinese)
[9] OH J Y, ZIEGLER M. Investigation on influence of tail void grouting on the surface settlements during shield tunneling using a stress-pore pressure coupled analysis [J]. KSCE Journal of Civil Engineering, 2014, 18(3): 803-811.
[10] 许发成. 掘进机主驱动密封润滑系统试验研究[J]. 隧道建设(中英文), 2021, 41(S1): 70-74. XU F C. Experimental study on main drive seal lubrication system of tunneling machine [J]. Tunnel Construction, 2021, 41(S1): 70-74. (in Chinese)
[11] 谭锋, 杨博, 黄乐, 等. 盾构机主驱动密封结构优化研究[J]. 润滑与密封, 2022, 47(4): 116-123. TAN F, YANG B, HUANG L, et al. Study on the structure optimization of shield tunneling machine's main drive seal [J]. Lubrication Engineering, 2022, 47(4): 116-123. (in Chinese)
[12] 赵敏敏, 黄乐, 张岐, 等. 基于Ansys的O形橡胶密封圈密封性能及可靠性研究[J]. 橡胶工业, 2020, 67(2): 131-134. ZHAO M M, HUANG L, ZHANG Q, et al. Study on sealing performance and reliability of rubber O-ring by Ansys [J]. China Rub[KG-0.6mm]ber Industry, 2020, 67(2): 131-134. (in Chinese)
[13] 张拓, 穆立烨. 盾构机主驱动密封系统研究[J]. 科技创新导报, 2018, 15(25): 19, 21. ZHANG T, MU L Y. Research on main drive sealing system of shield [J]. Science and Technology Innovation Herald, 2018, 15(25): 19, 21. (in Chinese)
[1] 苏阳, 李晓伟, 吴莘馨, 张作义. 核反应堆蒸汽发生器两相流不稳定性现象规律、研究方法及应用[J]. 清华大学学报(自然科学版), 2023, 63(8): 1184-1203.
[2] 杨林清, 秦本科, 薄涵亮. 结合部耦合的能量分析方法[J]. 清华大学学报(自然科学版), 2023, 63(5): 840-848.
[3] 王奇, 蒋伟, 王文强, 雷江利, 张章, 赵淼. 材料弹性对降落伞充气展开力学性能影响[J]. 清华大学学报(自然科学版), 2023, 63(3): 356-366.
[4] 张章, 吴杰, 赵淼, 王奇, 刘宇. 空间充气式返回器气动弹性动力响应特征[J]. 清华大学学报(自然科学版), 2023, 63(3): 394-405.
[5] 曹恒超, 徐乙人, 孙楠楠, 韩承敏, 朱桂香, 李永健. 船用柴油机曲轴箱轴端密封试验研究与改进[J]. 清华大学学报(自然科学版), 2022, 62(9): 1532-1538.
[6] 李晓伟, 吴莘馨, 张作义, 赵加清, 雒晓卫. 高温气冷堆示范工程螺旋管式直流蒸汽发生器工程验证试验[J]. 清华大学学报(自然科学版), 2021, 61(4): 329-337.
[7] 黄伟峰, 潘晓波, 王子羲, 郭飞, 刘莹, 李永健, 刘向锋. 上游泵送机械密封热流固耦合建模与性能分析[J]. 清华大学学报(自然科学版), 2020, 60(7): 603-610.
[8] 黄文仕, 吴玉新, 冯乐乐, 张缦, 张扬. 高速圆射流中典型非球形颗粒的扩散特性[J]. 清华大学学报(自然科学版), 2020, 60(6): 485-492.
[9] 唐国力, 吴玉新, 顾君苹, 刘青, 吕俊复. 垂直上升光管中气液两相摩擦因子分析[J]. 清华大学学报(自然科学版), 2020, 60(6): 500-506.
[10] 何强, 李永健, 黄伟峰, 李德才, 胡洋, 王玉明. 基于MPI+OpenMP混合编程模式的大规模颗粒两相流LBM并行模拟[J]. 清华大学学报(自然科学版), 2019, 59(10): 847-853.
[11] 闵琪, 段远源, 王晓东. 格子Boltzmann模型结合MPR方程模拟流体饱和气液密度[J]. 清华大学学报(自然科学版), 2014, 54(5): 619-623.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn