Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2023, Vol. 63 Issue (3): 311-321    DOI: 10.16511/j.cnki.qhdxxb.2022.26.048
  论文 本期目录 | 过刊浏览 | 高级检索 |
攻角效应对降落伞拉直过程影响的仿真模拟
王广兴1,2, 房冠辉1,2, 李健1,2, 刘涛1,2, 何青松1,2, 贾贺1,2
1. 北京空间机电研究所, 北京 100094;
2. 中国航天科技集团有限公司 航天进入减速与着陆技术实验室, 北京 100094
Simulation of the effect of attack angle on ejection and deployment of a parachute
WANG Guangxing1,2, FANG Guanhui1,2, LI Jian1,2, LIU Tao1,2, HE Qingsong1,2, JIA He1,2
1. Beijing Institute of Space Mechanics & Electricity, Beijing 100094, China;
2. Laboratory of Aerospace Entry, Descent and Landing Technology, China Aerospace Science and Technology Corporation, Beijing 100094, China
全文: PDF(17508 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 降落伞的弹射拉直过程是降落伞工作的第一个关键动作,能为后续降落伞顺利充气创造条件。降落伞的弹射拉直过程一般处于飞行器尾流区域,尾流特性对该过程具有重要影响。开伞时飞行器的高度、Mach数、攻角等均会对飞行器尾流造成影响,其中开伞时飞行器攻角是降落伞设计中的一个重要考虑因素。该文采用三维非定常Reynolds平均N-S (unsteady Reynolds averaged Navier-Stokes,URANS)方程耦合六自由度(six degrees of freedom,6DoF)运动方程的方法,针对攻角效应对降落伞弹射拉直过程影响进行了研究。结果表明:攻角效应会显著改变飞行器尾流特性,与0°攻角相比,非0°攻角返回舱尾流呈现非对称流动特征,进而导致尾流方向与弹射初始速度方向不一致;非对称尾流会对分离体轨迹和姿态产生较大影响;攻角效应会导致分离体与尾流相对位置改变,从而影响拉直过程时间,即随着开伞攻角增加,弹射拉直时间减少。该方法和结论对于降落伞系统设计具有重要的参考价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王广兴
房冠辉
李健
刘涛
何青松
贾贺
关键词 攻角效应尾流超声速降落伞弹射拉直仿真    
Abstract:[Objective] Ejection and deployment are the first key actions in the working process of a parachute, thereby resulting in its inflation. Ejection and deployment typically work in the wake of space crafts; therefore, the wake greatly influences the process. The conditions of the free stream may affect the wake flow, such as the attitude, Mach number, and angle of attack. Consequently, the angle of attack of an aircraft is an important consideration in parachute design.[Methods] Ejection and deployment are related to multiple factors, including fluid dynamics, multibody separation, and flexibility deformation. Owing to the advantages of fluid field information and low cost, computation fluid dynamics has become a powerful tool for solving engineering problems regarding fluids. This article focuses on the effect of attack angle on the ejection and deployment of a parachute. Based on the overset grid technology, the three-dimensional unsteady Reynolds averaged Navier-Stokes (URANS) coupled with a six-degrees-of-freedom (6DoF) equation of motion is applied to the research. The simulation consists of two steps:the static flow field simulation and the dynamic separation process based on the static flow field.[Results] The simulation results showed the following:(1) The negative aero force at 0° angle of attack in the recirculation zone hindered the separator department. (2) The wake during the 0° angle of attack was parallel to the axis of capsule; however, 10° and 20° angles of attack demonstrated an obvious deviation from the axis. (3) The separator showed almost no attitude variation for 0° angle of attack, whereas an obvious attitude variation for 10° and 20° angles of attack resulted from the direction of the wake. (4) An obvious interaction occurred between the wake behind the capsule and shock before the separator.[Conclusions] The following conclusions can be drawn from the research:The effects of the angle of attack significantly change the characteristics of the wake. Compared with the 0° condition, the capsule wakes present an asymmetric character in the other two conditions. What's more, the wake shows an obvious deviation from the direction of the initial separated velocity; the asymmetrical wake will affect the trajectory and attitude of the separator; and the effect of the angle of attack will change the relative position between the capsule and the separator and influence the separated time:the time of ejection and deployment will be reduced with an increase in the angle of attack. The method and the conclusions can provide a valuable reference for the validation and design of the recovery system.
Key wordseffect of attack angle    wake flow    supersonic parachute    ejection and deployment    simulation
收稿日期: 2021-12-28      出版日期: 2023-03-04
基金资助:天问二号小天体探测项目
作者简介: 王广兴(1986-),男,工程师。E-mail:wang1guang1xing@126.com
引用本文:   
王广兴, 房冠辉, 李健, 刘涛, 何青松, 贾贺. 攻角效应对降落伞拉直过程影响的仿真模拟[J]. 清华大学学报(自然科学版), 2023, 63(3): 311-321.
WANG Guangxing, FANG Guanhui, LI Jian, LIU Tao, HE Qingsong, JIA He. Simulation of the effect of attack angle on ejection and deployment of a parachute. Journal of Tsinghua University(Science and Technology), 2023, 63(3): 311-321.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2022.26.048  或          http://jst.tsinghuajournals.com/CN/Y2023/V63/I3/311
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] 荣伟. 航天器进入下降与着陆技术[M]. 北京:北京理工大学出版社, 2018. RONG W. Spacecraft entry, descent and landing technology[M]. Beijing:Beijing Institute of Technology Press, 2018. (in Chinese)
[2] 高兴龙. 物伞流固耦合及多体系统动力学研究[D]. 长沙:国防科学技术大学, 2016. GAO X L. Research on multibody dynamics and fluid-structure interaction of parachute-body system[D]. Changsha:National University of Defense Technology, 2016. (in Chinese)
[3] MCVEY D F, WOLF D F. Analysis of deployment and inflation of large ribbon parachutes[J]. Journal of Aircraft, 1974, 11(2):96-103.
[4] PURVIS J W. Prediction of line sail during lines-first deployment[J]. Journal of Aircraft, 1983, 20(11):940-945.
[5] 张青斌, 程文科, 彭勇, 等. 降落伞拉直过程的多刚体模型[J]. 中国空间科学技术, 2003, 23(2):45-50. ZHANG Q B, CHENG W K, PENG Y, et al. A multi-rigid-body model of parachute deployment[J]. Chinese Space Science and Technology, 2003, 23(2):45-50. (in Chinese)
[6] 宋旭民, 范丽, 秦子增. 大型降落伞开伞过程中的抽鞭现象[J]. 航天返回与遥感, 2009, 30(3):16-21. SONG X M, FAN L, QIN Z Z. "Vent Whip" during large parachute deployment[J]. Spacecraft Recovery & Remote Sensing, 2009, 30(3):16-21. (in Chinese)
[7] 鲁媛媛, 荣伟, 吴世通. 火星环境下降落伞拉直过程的动力学建模[J]. 航天返回与遥感, 2014, 35(1):29-36. LU Y Y, RONG W, WU S T. Dynamic modeling of parachute deployment in mars environment[J]. Spacecraft Recovery & Remote Sensing, 2014, 35(1):29-36. (in Chinese)
[8] 黄伟. 降落伞最小弹射分离速度的计算方法[J]. 航天返回与遥感, 2018, 39(2):26-33. HUANG W. The Calculation method of minimum ejectionvelocity of the first stage parachute[J]. Spacecraft Recovery &Remote Sensing, 2018, 39(2):26-33. (in Chinese)
[9] 王海涛, 程文科. 考虑尾流影响的降落伞弹射拉直过程研究[J]. 航天返回与遥感, 2017, 38(5):3-9. WANG H T, CHENG W K. Research on ejecting and deploying process of parachute considering wake flow effects[J]. Spacecraft Recovery & Remote Sensing, 2017, 38(5):3-9. (in Chinese)
[10] 鲁媛媛, 荣伟, 吴世通. 火星探测器降落伞拉直过程中的"绳帆"现象研究[J]. 宇航学报, 2014, 35(11):1238-1244. LU Y Y, RONG W, WU S T. Study on line sail during Mars probe parachute deployment[J]. Journal of Astronautics, 2014, 35(11):1238-1244. (in Chinese)
[11] WAY D W, POWELL R W, CHEN A, et al. Mars science laboratory:Entry, descent, and landing system performance[C]//2007 IEEE Aerospace Conference. Big Sky, USA:IEEE, 2007:1-19.
[12] 徐琳, 宋万强. 基于动态网格的多体分离计算技术研究[J]. 航空科学技术, 2019, 30(2):7-13. XU L, SONG W Q. Research on numerical simulation technology of multi-body separation based on dynamic grid[J]. Aeronautical Science & Technology, 2019, 30(2):7-13. (in Chinese)
[13] 王广兴. 迎风面转捩与背风面大分离共存流动一体化研究[D]. 北京:清华大学, 2019. WANG G X. Studies of complex flows with both transition on the windward side and massive separation on the leeward side[D]. Beijing:Tsinghua University, 2019. (in Chinese)
[14] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8):1598-1605.
[15] 钱杏芳, 林瑞雄, 赵亚男. 导弹飞行力学[M]. 北京:北京理工大学出版社, 2020. QIAN X F, LIN R X, ZHAO Y N. Missile flight aerodynamics[M]. Beijing:Beijing Institute of Technology Press, 2020. (in Chinese)
[16] HEIM E R. CFD Wing/Pylon/Finned store mutual interference wind tunnel experiment[R]. Tennessee:Arnold Engineering Development Center, 1991.
[17] PANAGIOTOPOULOS E E, KYPARISSIS S D. CFD transonic store separation trajectory predictions with comparison to wind tunnel investigations[J]. International Journal of Engineering, 2010, 3(6):538-553.
[18] 邹东阳. 基于非结构动网格的激波装配/捕捉统一求解方法[D]. 大连:大连理工大学, 2018. ZOU D Y. Combinations of shock-fitting and shock-capturing methods based on unstructured dynamic grids[D]. Dalian:Dalian University of Technology, 2018. (in Chinese)
[1] 李其奋, 王旸旸, 李冠宇, 王瑞浩, 徐明伟. 基于多台可编程交换机的网络拓扑仿真与性能评估[J]. 清华大学学报(自然科学版), 2024, 64(4): 659-667.
[2] 王斌, 张继文, 吴丹. 基于机器人建模的航空装配测控仿真分析方法[J]. 清华大学学报(自然科学版), 2024, 64(4): 724-737.
[3] 刘安邦, 陈曦, 赵千川, 李博睿. 地铁线路储能装置与牵引装置联合优化配置方法[J]. 清华大学学报(自然科学版), 2023, 63(9): 1408-1414.
[4] 莫毅, 陈璠, 许笑颜, 焦哲, 卫刚, 林宏军, 肖为, 王方, 任祝寅. 航空发动机燃烧室两相湍流燃烧建模与仿真[J]. 清华大学学报(自然科学版), 2023, 63(4): 670-680.
[5] 刘宇, 赵淼, 张章, 贾贺, 黄伟. 锥形减速结构流场热化学非平衡仿真[J]. 清华大学学报(自然科学版), 2023, 63(3): 386-393,413.
[6] 陈天元, 周钰颖, 高安. 借助光刻成像仿真软件的μDBO穿线套刻标记[J]. 清华大学学报(自然科学版), 2023, 63(12): 2057-2075.
[7] 张树卿, 唐绍普, 于思奇, 卢洵, 张东辉. 变流器组网多时间尺度特性及其模型分细度仿真应用[J]. 清华大学学报(自然科学版), 2023, 63(1): 78-93.
[8] 樊志强, 赵争鸣, 施博辰, 虞竹珺, 郑嘉霖. 基于DSIM仿真的多端口电力电子变压器损耗分析[J]. 清华大学学报(自然科学版), 2023, 63(1): 94-103.
[9] 程恒, 周秋景, 娄诗建, 张国新, 刘毅, 雷峥琦. 石坝河水库堆石混凝土重力坝施工期工作性态仿真[J]. 清华大学学报(自然科学版), 2022, 62(9): 1408-1416.
[10] 周伟, 李敏, 丘铭军, 张西龙, 柳江, 张洪波. 基于改进遗传算法的车身板件厚度优化[J]. 清华大学学报(自然科学版), 2022, 62(3): 523-532.
[11] 赵雅聪, 王启明. FAST索牵引并联机器人的动力学建模与仿真[J]. 清华大学学报(自然科学版), 2022, 62(11): 1772-1779.
[12] 张宁远, 罗斌, 沈宇洲, 姜鹏, 李辉, 李庆伟. FAST索网运行准实时评估系统研究与开发[J]. 清华大学学报(自然科学版), 2022, 62(11): 1816-1822.
[13] 黄伟灿, 蒋晓华, 薛芃, 李欣阳, 沈稚栋, 孙宇光. 超导直流能源管道载流导体设计[J]. 清华大学学报(自然科学版), 2022, 62(10): 1715-1720.
[14] 陈志恒, 荣冠, 谭尧升, 张子阳, 王克祥, 罗贯军. 白鹤滩大坝三维渗流场仿真与渗控效果评价[J]. 清华大学学报(自然科学版), 2021, 61(7): 705-713,723.
[15] 刘有志, 张国新, 谭尧升, 刘春风, 龚攀, 裴磊. 仿真大坝建设关键技术与实践应用[J]. 清华大学学报(自然科学版), 2021, 61(7): 714-723.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn