Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2023, Vol. 63 Issue (3): 433-448    DOI: 10.16511/j.cnki.qhdxxb.2022.26.052
  论文 本期目录 | 过刊浏览 | 高级检索 |
月球环境下明暗交界处月尘输运异常现象
董泰郎1, 冯昱龙1, 黄伟2, 任德鹏3, 王志浩4, 王建山1, 崔玉红1
1. 天津大学 机械工程学院, 天津 300350;
2. 北京空间机电研究所, 北京 100094;
3. 北京空间飞行器总体设计部, 北京 100094;
4. 北京卫星环境工程研究所, 北京 100094
Abnormal phenomena of lunar dust transport near a light/dark junction region on the lunar surface
DONG Tailang1, FENG Yulong1, HUANG Wei2, REN Depeng3, WANG Zhihao4, WANG Jianshan1, CUI Yuhong1
1. School of Mechanical Engineering, Tianjin University, Tianjin 300350, China;
2. Beijing Institute of Space Mechanics & Electricity, Beijing 100094, China;
3. Beijing Institute of Spacecraft System Engineering, Beijing 100094, China;
4. Beijing Institute of Spacecraft Environment Engineering, Beijing 100094, China
全文: PDF(12692 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 月表环境下,山脉或探测器和巡视器等附近形成的整体或局部明暗交界区域会发生月尘输运异常现象。该文通过建立整体和局部2种明暗交界模型,采用质点网格法和蛙跳法,基于Apollo探测器实测的月表月尘数量,研究了2种模型的月尘输运异常现象。结果显示,整体明暗交界区域存在非常显著的月尘输运异常现象,月尘输运路径呈现喇叭口形状或片状抛物线形状,并在明暗交界线上方发生大量月尘聚集,月尘输运现象具有明显的水平输运特征。在局部明暗交界区域的探测器左侧和右侧均出现非常显著的月尘输运异常现象,具有双向水平输运特征,并存在或大或小的双月尘涡旋,引起了探测器周围的局部“月尘暴”。整体明暗交界区域月尘输运异常现象可间接地验证“辉光”现象,局部明暗交界区域月尘输运异常现象也可能是月表探测器上沉积大量月尘的主要原因之一。月尘输运异常现象不但对现役的月球车和探测器等有潜在危害,也是人类在未来探月活动中无法回避的关键问题之一。该文研究的结果对月球探测器着陆点和巡视器行走路线的选取具有重要的参考价值,有助于降低月尘污染对人类探月活动的影响。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
董泰郎
冯昱龙
黄伟
任德鹏
王志浩
王建山
崔玉红
关键词 月尘输运明暗交界异常现象探测器和巡视器质点网格法蛙跳法    
Abstract:[Significance] Neither a global atmosphere nor a magnetic field exists above the lunar surface. The lunar surface is exposed to high-energy ultraviolet radiation and solar wind, which charge a large amount of lunar dust to form high-potential, local electric fields. The lunar mountains, with a length of more than ten kilometers and a vertical height of several kilometers, block ultraviolet radiation from the sun, creating a whole light-dark junction region with a shadow region on the lunar surface. Meanwhile, the occlusion of the lunar surface by a detector or a rover also forms a local light/dark junction region under sunlight. Under the lunar environment, complex electric fields exist at the whole and local light-dark junction regions, which leads to the abnormal phenomenon of charged lunar dust transport. In this paper, the whole and local light-dark interface models were proposed, and the particle-in-cell method and leap-frog method were used to study the lunar dust transport anomalies of the two models based on measured data of the Apollo lunar dust samples. The results showed that a very significant abnormal phenomenon of lunar dust transport occurred in the whole and local light-dark interface models. First, the lunar dust transport path was bell-shaped or parabolic, and a large amount of lunar dust accumulated above the boundary in the whole light-dark interface model. Moreover, the lunar dust transport phenomenon had an obvious horizontal transport characteristic, and the horizontal transport velocity was approximately two to ten times that of the vertical direction. Particularly, the abnormal phenomenon of lunar dust transport at the junction between light and dark was more severe and more likely to occur in the whole light-dark interface model. Second, in the local light/dark interface model, significant anomalies of lunar dust transport were found on both the left and right side of the detector, where a large amount of lunar dust was transported bidirectionally from one side to another side, passing through the detector in the horizontal direction. In particular, a large or small lunar dust vortex rotated around both sides of the left and right detector, resulting in a local "moondust storm" around the detector with a number density of approximately 1.4×105 particles per cubic meter. This paper predicts the abnormal phenomenon of lunar dust transport for the whole light-dark junction region caused by mountain occlusion, which can indirectly verify the observed occurrence of the "horizontal glow" phenomenon. Abnormal transport of lunar dust in the local light-dark junction region may be one of the main reasons for the deposition of much lunar dust on the detector/rover and so on. The abnormal phenomenon of lunar dust transport is not only potentially harmful to the current lunar detector/rover and so on, but also a key problem that human exploration activities cannot avoid. The results of this study have not only an important reference value for selecting the landing site of a lunar detector and the traveling route of a rover but also helpful to reduce the lunar dust pollution caused by the detector/rover and so on.
Key wordslunar dust transport    light/dark junction region    abnormal phenomena    detector and rover    particle-in-cell method    leap-frog method
收稿日期: 2021-12-21      出版日期: 2023-03-04
通讯作者: 崔玉红,教授,E-mail:yhcui@tju.edu.cn      E-mail: yhcui@tju.edu.cn
作者简介: 董泰郎(1996-),男,博士研究生。
引用本文:   
董泰郎, 冯昱龙, 黄伟, 任德鹏, 王志浩, 王建山, 崔玉红. 月球环境下明暗交界处月尘输运异常现象[J]. 清华大学学报(自然科学版), 2023, 63(3): 433-448.
DONG Tailang, FENG Yulong, HUANG Wei, REN Depeng, WANG Zhihao, WANG Jianshan, CUI Yuhong. Abnormal phenomena of lunar dust transport near a light/dark junction region on the lunar surface. Journal of Tsinghua University(Science and Technology), 2023, 63(3): 433-448.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2022.26.052  或          http://jst.tsinghuajournals.com/CN/Y2023/V63/I3/433
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] HALEKAS J S, SAITO Y, DELORY G T, et al. New views of the lunar plasma environment[J]. Planetary and Space Science, 2011, 59(14):1681-1694.
[2] STUBBS T J, GLENAR D A, FARRELL W M, et al. On the role of dust in the lunar ionosphere[J]. Planetary and Space Science, 2011, 59(13):1659-1664.
[3] WALTON O R. Adhesion of lunar dust[R/OL]. (2007-04-01)[2020-03-02]. https://ntrs.nasa.gov/search.jsp?R=20070020448.
[4] FREEMAN JR J W, FENNER M A, HILLS H K. Electric potential of the Moon in the solar wind[J]. Journal of Geophysical Research, 1973, 78(22):4560-4567.
[5] FENNER M A, FREEMAN JR J W, HILLS H K. The electric potential of the lunar surface[C]//Proceedings of the Lunar Science Conference. Houston, USA:Lunar and Planetary Institute, 1973:2877.
[6] FREEMAN J W, IBRAHIM M. Lunar electric fields, surface potential and associated plasma sheaths[J]. The Moon, 1975, 14(1):103-114.
[7] COLWELL J E, GULBIS A A S, HORÁNYI M, et al. Dust transport in photoelectron layers and the formation of dust ponds on Eros[J]. Icarus, 2005, 175(1):159-169.
[8] AFSHAR-MOHAJER N, WU C Y, CURTIS J S, et al. Review of dust transport and mitigation technologies in lunar and Martian atmospheres[J]. Advances in Space Research, 2015, 56(6):1222-1241.
[9] RENNILSON J J, CRISWELL D R. Surveyor observations of lunar horizon-glow[J]. The Moon, 1974, 10(2):121-142.
[10] ZOOK H A, MCCOY J E. Large scale lunar horizon glow and a high altitude lunar dust exosphere[J]. Geophysical Research Letters, 1991, 18(11):2117-2120.
[11] BERG O E, RICHARDSON F F, RHEE J W, et al. Preliminary results of a cosmic dust experiment on the Moon[J]. Geophysical Research Letters, 1974, 1(7):289-290.
[12] GRVN E, HORANYI M, STERNOVSKY Z. The lunar dust environment[J]. Planetary and Space Science, 2011, 59(14):1672-1680.
[13] KUZNETSOV I A, HESS S L G, ZAKHAROV A V, et al. Numerical modelling of the Luna-Glob lander electric charging on the lunar surface with SPIS-DUST[J]. Planetary and Space Science, 2018, 156:62-70.
[14] HOLLICK M, O'BRIEN B J. Lunar weather measurements at three Apollo sites 1969-1976[J]. Space Weather, 2013, 11(11):651-660.
[15] ZHANG H Y, WANG Y, CHEN L P, et al. In-situ lunar dust deposition amount induced by lander landing in Chang'e-3 mission[J]. Science China Technological Sciences, 2020, 63(3):520-527.
[16] FEUERBACHER B, ANDEREGG M, FITTON B, et al. Photoemission from lunar surface fines and the lunar photoelectron sheath[C]//Proceedings of the Third Lunar Science Conference. Noordwijk, Holland:The MIT Press, 1972:2655-2663.
[17] STERNOVSKY Z, HORÁNYI M, ROBERTSON S. Charging of dust particles on surfaces[J]. Journal of Vacuum Science & Technology A, 2001, 19(5):2533-2541.
[18] ABBAS M M, TANKOSIC D, CRAVEN P D, et al. Lunar dust charging by photoelectric emissions[J]. Planetary and Space Science, 2007, 55(7-8):953-965.
[19] ABBAS M M, TANKOSIC D, CRAVEN P D, et al. Lunar dust grain charging by electron impact:Complex role of secondary electron emissions in space environments[J]. The Astrophysical Journal, 2010, 718(2):795-809.
[20] 甘红, 王世杰, 李雄耀. 月尘静电迁移研究进展[J]. 空间科学学报, 2013, 33(2):135-142. GAN H, WANG S J, LI X Y. Electrostatic transportation of lunar dust:A review[J]. Chinese Journal of Space Science, 2013, 33(2):135-142. (in Chinese)
[21] 薛丹, 刘金远, 李书翰. 月表尘埃颗粒带电的机理及应用研究[J]. 物理学报, 2018, 67(13):135201. XUE D, LIU J Y, LI S H. Charging mechanism and application of lunar dust grains[J]. Acta Physica Sinica, 2018, 67(13):135201. (in Chinese)
[22] HORÁNYI M. Charged dust dynamics in the solar system[J]. Annual Review of Astronomy and Astrophysics, 1996, 34(1):383-418.
[23] STUBBS T J, VONDRAK R R, FARRELL W M. A dynamic fountain model for lunar dust[J]. Advances in Space Research, 2006, 37(1):59-66.
[24] POPPE A, HORÁNYI M. Simulations of the photoelectron sheath and dust levitation on the lunar surface[J]. Journal of Geophysical Research:Space Physics, 2010, 115(A8):A08106.
[25] POPPE A R, PIQUETTE M, LIKHANSKII A, et al. The effect of surface topography on the lunar photoelectron sheath and electrostatic dust transport[J]. Icarus, 2012, 221(1):135-146.
[26] PIQUETTE M, HORÁNYI M. The effect of asymmetric surface topography on dust dynamics on airless bodies[J]. Icarus, 2017, 291:65-74.
[27] O'BRIEN B J, HOLLICK M. Sunrise-driven movements of dust on the Moon:Apollo 12 ground-truth measurements[J]. Planetary and Space Science, 2015, 119:194-199.
[28] MATÉO VÉLEZ J C, SARRAILH P, HESS S, et al. Dust electrostatic charging, transport and contamination for lunar lander and human exploration missions[EB/OL]. (2017-03-06)[2020-07-01]. https://indico.esa.int/event/188/contributions/1634/attachments/1519/1750/ESA-SPIS-DUST-ccn-fpdays-2017-03_BJR007.pdf.
[29] 毛子瑞. 月坑对单个和大量月尘颗粒的静电浮扬影响的数值计算分析[D]. 天津:天津大学, 2013. MAO Z R. Numerical computation of lunar crater's impact on singular and multiple lunar dusts' electrostatic levitation[D]. Tianjin:Tianjin University, 2013. (in Chinese)
[30] LI L, ZHANG Y T, ZHOU B, et al. Dust levitation and transport over the surface of the Moon[J]. Science China Earth Sciences, 2016, 59(10):2053-2061.
[31] GAIER J R. The effects of lunar dust on EVA systems during the Apollo missions[R/OL]. (2007-04-01)[2020-03-30]. https://ntrs.nasa.gov/citations/20070021819.
[32] CHRISTOFFERSEN R, LINDSAY J F, NOBLE S K, et al. Lunar dust effects on spacesuit systems:Insights from the Apollo spacesuits[R/OL]. (2008-01-01)[2020-03-30]. https://ntrs.nasa.gov/citations/20090015239.
[33] 马加炉, 王怡灵, 谢广辉, 等. 月尘对登月服的影响及研究进展[J]. 载人航天, 2016, 22(4):445-451. MA J L, WANG Y L, XIE G H, et al. Effect and research progress of lunar dust on lunar EVA space suits[J]. Manned Spaceflight, 2016, 22(4):445-451. (in Chinese)
[34] HORÁNYI M, SZALAY J R, KEMPF S, et al. A permanent, asymmetric dust cloud around the Moon[J]. Nature, 2015, 522(7556):324-326.
[35] DUNBAR B. Sunrise on the Moon[N/OL]. (2017-08-07)[2020-07-01]. https://www.nasa.gov/multimedia/imagegallery/image_feature_1987.html.
[36] 杨璐. 嫦娥四号任务圆满成功[N/OL]. (2019-01-11)[2020-07-01]. http://www.cnsa.gov.cn/n6758823/n6758844/n6760026/n6760027/c6805178/content.html. YANG L. The Chang'e-4 mission was successfully completed[N/OL]. (2019-01-11)[2020-07-01]. http://www.cnsa.gov.cn/n6758823/n6758844/n6760026/n6760027/c6805178/content.html. (in Chinese)
[37] TSKHAKAYA D, MATYASH K, SCHNEIDER R, et al. The particle-in-cell method[J]. Contributions to Plasma Physics, 2007, 47(8-9):563-594.
[38] 欧阳自远. 月球科学概论[M]. 北京:中国宇航出版社, 2005. OUYANG Z Y. Introduction to lunar science[M]. Beijing:China Astronautic Publishing House, 2005. (in Chinese)
[39] POLYCARPOU A C. Introduction to the finite element method in electromagnetics[M]. San Rafael:Morgan & Claypool, 2006.
[40] HEIKEN G H, VANIMAN D T, FRENCH B M. Lunar sourcebook:A user's guide to the Moon[M]. Cambridge:Cambridge University Press, 1991.
[41] NĚME AČG EK Z, PAVL AU°G J, ŠAFRÁNKOVÁ J, et al. Lunar dust grain charging by electron impact:Dependence of the surface potential on the grain size[J]. The Astrophysical Journal, 2011, 738(1):14.
[42] WANG X, SCHWAN J, HOOD N, et al. Experimental methods of dust charging and mobilization on surfaces with exposure to ultraviolet radiation or plasmas[J]. Journal of Visualized Experiments:JoVE, 2018(134):57072.
[43] WANG Z H, TIAN D B, MA Z L, et al. An electrostatic lofting model based on adhesion separation characteristics for lunar dust[J]. Planetary and Space Science, 2020, 184:104883.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn