Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2023, Vol. 63 Issue (3): 356-366    DOI: 10.16511/j.cnki.qhdxxb.2022.26.059
  论文 本期目录 | 过刊浏览 | 高级检索 |
王奇1,2, 蒋伟1,2, 王文强1,2, 雷江利1,2, 张章1,2, 赵淼1,2
1. 北京空间机电研究所, 北京 100094;
2. 中国航天科技集团有限公司 航天进入减速与着陆技术重点实验室, 北京 100094
Effect of material elasticity on the mechanics of opening a parachute
WANG Qi1,2, JIANG Wei1,2, WANG Wenqiang1,2, LEI Jiangli1,2, ZHANG Zhang1,2, ZHAO Miao1,2
1. Beijing Institute of Space Mechanics & Electricity, Beijing 100094, China;
2. Laboratory of Aerospace Entry, Descent and Landing Technology, China Aerospace Science and Technology Corporation, Beijing 100094, China
全文: PDF(19094 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 降落伞充气展开过程涉及柔性结构非线性变形与流场的高度耦合。为研究不同弹性的纬向加强带对降落伞充气展开过程中力学特性的影响,该文基于流固耦合(fluid-solid interaction,FSI)方法对3种弹性纬向加强带构型的带条伞进行充气展开过程模拟,获得了充气展开过程中气动力、纬向加强带张力和伞衣应力分布等关键参数,分析了织物材料弹性对降落伞开伞动载以及局部受力情况的影响,并通过风洞试验对带条伞充气展开过程的气动力变化进行测试,验证了利用FSI方法预测降落伞动态力学及局部受力特性的可行性。仿真和试验结果表明:纬向加强带弹性模量对降落伞充气展开过程中整体气动力影响甚微,对于伞衣和纬向加强带本身的应力分布影响显著;采用与伞衣相同材料的锦丝纬向加强带能显著降低局部应力水平,相较于高弹性模量的芳Ⅲ纬向加强带,纬向加强带和伞衣的最大应力分别降低83.3%和22.8%。
E-mail Alert
关键词 降落伞材料弹性模量充气展开流固耦合风洞试验    
Abstract:[Objective] Parachutes are aerodynamic devices widely used in the deceleration and landing stages of a spacecraft.The opening process is the most critical working scenario of a parachute, wherein structural damage often occurs due to a significantly high aerodynamic load. Generally, the peak aerodynamic load during inflation and deployment of a parachute can reach more than 1.5 times the load at its steady state.Because of the high elasticity and damping characteristics of the flexible fabric materials comprising the parachute, the peak dynamic load can be effectively reduced. Thus, it is extremely important to accurately predict the mechanical characteristics of fabric materials during the opening process. In this paper, a numerical simulation method is used to study the mechanical characteristics of the fabric material in the inflation and deployment of a conical ribbon parachute. The opening process of a parachute involves a strong coupling effect of the nonlinear flexible structure and flow field. To investigate the influence of latitudinal reinforcing bands with different elasticities on the mechanics of a ribbon parachute, the opening processes of parachutes with different elastic and without latitudinal bands are simulated using the fluid-solid interaction (FSI) method. In the three parachutes, nylon and aramid fiber Ⅲ are used for latitudinal reinforcing bands in the first and second parachutes, respectively, the third has no latitudinal reinforcing band. The arbitrary lagrange-euler (ALE) method is applied to simulate the opening process, and the penalty-function method is used to demonstrate the force and displacement information between the canopy and flow field elements. The numerical simulation process is performed based on the LS-DYNA solver with the single-machine-distributed parallel computing strategy. Based on the simulation results of aerodynamics, latitudinal reinforcing band tension, and parachute canopies stress, the effect of the fabric material elasticity on the dynamic load of a parachute during the opening process is analyzed. Eventually, the aerodynamics of the parachute without latitudinal bands during the opening process is tested using the wind tunnel test, and the feasibility of predicting the mechanics of a parachute by the FSI method is verified. The simulation and experimental results showed that the elastic modulus of latitudinal bands had a nominal effect on the overall aerodynamics but had a significant effect on the stress of the canopies and latitudinal bands during the opening process. During the opening of a parachute, the maximum stress in the canopy appearaled soon after the reefing stage ends, and the projected area and aerodynamic load of the canopy increased exponentially at this time. Compared with aramid fiber Ⅲ and without latitudinal bands, the maximum stress of the canopy with a nylon configuration was reduced by 22.8% and 11.5%, respectively. Additionally, the maximum stress of the latitudinal bands and canopies made of nylon were reduced by 83.3% and 22.8%, respectively, compared to those made of aramid fiber Ⅲ. Based on the finite element method, three dynamic models of conical ribbon parachutes with different latitudinal band configurations are established. Numerical analysis of the opening process is performed, and the part-delete method is introduced to simulate the disreefing process.The parachute opening process can be effectively simulated using the FSI method, which is later applied in the selection of materials and optimization of the parachute design.
Key wordsparachute    elastic modulus of fabrics    opening processes    fluid-solid interaction    wind tunnel test
收稿日期: 2022-01-04      出版日期: 2023-03-04
作者简介: 王奇(1985-),男,高级工程师。
王奇, 蒋伟, 王文强, 雷江利, 张章, 赵淼. 材料弹性对降落伞充气展开力学性能影响[J]. 清华大学学报(自然科学版), 2023, 63(3): 356-366.
WANG Qi, JIANG Wei, WANG Wenqiang, LEI Jiangli, ZHANG Zhang, ZHAO Miao. Effect of material elasticity on the mechanics of opening a parachute. Journal of Tsinghua University(Science and Technology), 2023, 63(3): 356-366.
链接本文:  或
[1] CAO Y H, NIE S, WU Z L. Numerical simulation of parachute inflation:A methodological review[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2019, 233(2):736-766.
[2] WOLF D. Parachute opening shock[C]//15th Aerodynamic Decelerator Systems Technology Conference. Toulouse, France:AIAA, 1999:253-257.
[3] WOLF D, FALLON E. Reefing line loads for Ares parachutes[C]//21st AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Dublin, Ireland:AIAA, 2011:1372-1386.
[4] BRAUN G, DOHERR K F. Experiments with omega sensors for measuring stress in the flexible material of parachute canopies[J]. Journal of Aircraft, 1980, 17(5):358-364.
[5] DOHERR K. Extended parachute opening shock estimation method[C]//17th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Monterey, USA:AIAA, 2003:1-8.
[6] WAY D W. A momentum-based indicator for predicting the peak opening load of supersonic parachutes[C]//2018 IEEE Aerospace Conference. Montana, USA:IEEE, 2018:1-9.
[7] PURVIS J W. Numerical prediction of deployment, initial fill, and inflation of parachute canopies[C]//8th Aerodynamic Decelerator and Balloon Technology Conference. Hyannis, USA:AIAA, 1984:34-38.
[8] DESABRAIS K J, JOHARI H. Unsteady potential flow forces on an inflating parachute canopy[C]//17th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Monterey, USA:AIAA, 2003:302-312.
[9] 贾贺, 荣伟, 陈国良. 基于LS-DYNA软件的降落伞充气过程仿真研究[J]. 航天器环境工程, 2010, 27(3):367-373. JIA H, RONG W, CHEN G L. The simulation of parachute inflation process based on LS-DYNA software[J]. Spacecraft Environment Engineering, 2010, 27(3):367-373. (in Chinese)
[10] 贾贺, 姜璐璐, 薛晓鹏, 等. 超声速透气降落伞系统的气动干扰数值模拟研究[J]. 航天返回与遥感, 2019, 40(6):26-34. JIA H, JIANG L L, XUE X P, et al. Numerical simulation of aerodynamic interaction of supersonic porosity parachutes[J]. Spacecraft Recovery & Remote Sensing, 2019, 40(6):26-34. (in Chinese)
[11] 王祁, 曹义华. 盘-缝-带伞超声速充气过程仿真研究[J]. 航天返回与遥感, 2018, 39(1):35-44. WANG Q, CAO Y H. Study on the simulation of the inflating process of disk-gap-band parachute in supersonic flow[J]. Spacecraft Recovery & Remote Sensing, 2018, 39(1):35-44. (in Chinese)
[12] TANG J H, QIAN L F. Numerical study of the reefing control of parachute inflation shock[C]//2015 IEEE International Conference on Information and Automation. Lijiang, China:IEEE, 2015:2013-2016.
[13] RAY E S. Reefing line tension in CPAS main parachute clusters[C]//AIAA Aerodynamic Decelerator Systems (ADS) Conference. Daytona Beach, USA:AIAA, 2013:1362-1378.
[14] RAY E S. Reconstruction of Orion EDU parachute inflation loads[C]//AIAA Aerodynamic Decelerator Systems (ADS) Confe-rence. Daytona Beach, USA:AIAA, 2013:139-163.
[15] 高兴龙, 张青斌, 高庆玉, 等. 有限质量降落伞充气动力学数值模拟[J]. 国防科技大学学报, 2016, 38(4):185-190. GAO X L, ZHANG Q B, GAO Q Y, et al. Numerical simulation on finite mass inflation dynamics of parachute[J]. Journal of National University of Defense Technology, 2016, 38(4):185-190. (in Chinese)
[16] KONICKE L A, GARRARD W L. Stress measurements in a ribbon parachute canopy[J]. Journal of Aircraft, 1982, 19(7):598-600.
[17] GARRARD W L, KONICKE M L, WU K S, et al. Measured and calculated stress in a ribbon parachute canopy[J]. Journal of Aircraft, 1987, 24(2):65-72.
[18] GARRARD W L, MURAMOTO K K. Calculated and experimental stress distributions in a ribbon parachute canopy[J]. Journal of Aircraft, 1982, 19(12):1095-1097.
[19] 王立武, 雷江利, 吴卓, 等. 降落伞收口绳载荷计算方法研究[J]. 航天返回与遥感, 2019, 40(4):22-29. WANG L W, LEI J L, WU Z, et al. Research on calculation method for reefing line loads of parachutes[J]. Spacecraft Recovery & Remote Sensing, 2019, 40(4):22-29. (in Chinese)
[20] 余莉, 李水生, 明晓. 降落伞弹性现象对伞衣载荷的影响[J]. 宇航学报, 2008, 29(1):375-379. YU L, LI S S, MING X. Influence of the parachute elastic behavior on the canopy payload[J]. Journal of Astronautics, 2008, 29(1):375-379. (in Chinese)
[21] 余莉, 张鑫华, 李水生. 降落伞伞衣载荷的性能试验[J]. 北京航空航天大学学报, 2007, 33(10):1178-1181. YU L, ZHANG X H, LI S S. Experimental on canopy payload performance of parachute[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(10):1178-1181. (in Chinese)
[22] 陈建稳, 陈务军, 王明洋, 等. 织物膜材弹性参数在应力空间上响应特征及非线性本构分析[J]. 湖南大学学报(自然科学版), 2017, 44(5):113-121. CHEN J W, CHEN W J, WANG M Y, et al. Response characteristics of elastic parameters of woven fabrics in stress space and a nonlinear constitutive analysis[J]. Journal of Hunan University (Natural Sciences), 2017, 44(5):113-121. (in Chinese)
[23] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 纺织品调湿和试验用标准大气:GB/T 6529-2008[S]. 北京:中国标准出版社, 2008. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Textiles-Standard atmospheres for conditioning and testing:GB/T 6529-2008[S]. Beijing:Standards Press of China, 2008. (in Chinese)
[1] 杨林清, 秦本科, 薄涵亮. 结合部耦合的能量分析方法[J]. 清华大学学报(自然科学版), 2023, 63(5): 840-848.
[2] 卫剑征, 张义, 侯一心, 谭惠丰. 全向增阻离轨的充气薄膜球设计与性能分析[J]. 清华大学学报(自然科学版), 2023, 63(3): 302-310.
[3] 王广兴, 房冠辉, 李健, 刘涛, 何青松, 贾贺. 攻角效应对降落伞拉直过程影响的仿真模拟[J]. 清华大学学报(自然科学版), 2023, 63(3): 311-321.
[4] 孙志鸿, 仇博文, 余莉, 李岩军, 聂舜臣. 伞衣织物微孔射流透气特性[J]. 清华大学学报(自然科学版), 2023, 63(3): 330-337.
[5] 陈冠华, 陈雅倩, 周宁, 贾贺, 荣伟, 薛晓鹏. 具有横向运动能力的圆形伞的设计[J]. 清华大学学报(自然科学版), 2023, 63(3): 338-347.
[6] 吴卓, 张文博, 王治国, 冯佳瑞, 任雅丽. 一种大型冲压式翼伞的设计与试验[J]. 清华大学学报(自然科学版), 2023, 63(3): 348-355.
[7] 隋蓉, 张文博, 贾贺, 蒋伟. 航天回收用降落伞材料强度验证方法[J]. 清华大学学报(自然科学版), 2023, 63(3): 367-375.
[8] 张章, 吴杰, 赵淼, 王奇, 刘宇. 空间充气式返回器气动弹性动力响应特征[J]. 清华大学学报(自然科学版), 2023, 63(3): 394-405.
[9] 项冲, 龙伟漾, 郭飞, 张新异, 蒋杰. 盾构主驱动密封性能流固耦合仿真[J]. 清华大学学报(自然科学版), 2023, 63(1): 71-77.
[10] 黄伟峰, 潘晓波, 王子羲, 郭飞, 刘莹, 李永健, 刘向锋. 上游泵送机械密封热流固耦合建模与性能分析[J]. 清华大学学报(自然科学版), 2020, 60(7): 603-610.
[11] 廖海黎, 马存明, 李明水, 孟凡超. 港珠澳大桥的结构抗风性能[J]. 清华大学学报(自然科学版), 2020, 60(1): 41-47.
[12] 张婉鑫, 朱纪洪. 大迎角非定常气动参数辨识研究[J]. 清华大学学报(自然科学版), 2017, 57(7): 673-679.
Full text



版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持