Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2023, Vol. 63 Issue (5): 802-810    DOI: 10.16511/j.cnki.qhdxxb.2022.26.060
  医疗设备 本期目录 | 过刊浏览 | 高级检索 |
碘-131 SPECT平片成像伪影校正算法
程李1, 刘帆2, 高丽蕾2, 刘辉1, 刘亚强1
1. 清华大学 工程物理系, 北京 100084;
2. 北京永新医疗设备有限公司, 北京 102206
Artifacts correction algorithm for iodine-131 SPECT planar imaging
CHENG Li1, LIU Fan2, GAO Lilei2, LIU Hui1, LIU Yaqiang1
1. Department of Engineering Physics, Tsinghua University, Beijing 100084, China;
2. Beijing Novel Medical Equipment Ltd., Beijing 102206, China)
全文: PDF(5468 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 碘-131单光子发射计算机断层扫描(single photon emission computed tomography,SPECT)平片成像已广泛应用于甲状腺癌的临床诊断和治疗评估中。由于碘-131发射的Gamma光子能量较高,穿透SPECT准直器隔壁的概率较大,易导致最终图像上出现放射状伪影。为解决该问题,该文提出了一种点扩展函数解卷积结合先验正则化的方法,并基于Monte Carlo模拟和临床数据对该方法进行了验证。模拟数据表明该算法具有很好的单调收敛性。当采用127×127的点扩展函数(像素大小2.2 mm×2.2 mm),设置正则化参数为0.01时,模拟数据、临床点源数据和人体数据的放射状伪影区域计数值可分别降低至原始值的4%、35%和28%,同时还可以维持背景区域较低的噪声水平。研究结果表明:该文算法可以有效解决碘-131 SPECT平片成像中的放射状伪影问题,从而提高临床诊断精度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
程李
刘帆
高丽蕾
刘辉
刘亚强
关键词 碘-131单光子发射计算机断层扫描放射状伪影解卷积先验正则化    
Abstract:[Objective] Iodine-131 SPECT (single photon emission computed tomography) planar imaging has been widely used in the clinical diagnosis and treatment evaluation of thyroid cancer. Because of the high-energy emissions of iodine-131, the photons have a high probability of penetrating the collimator septa of SPECT, causing "spoke" artifacts in the final result. The "spoke" artifacts make it difficult to distinguish accurate concentration regions of iodine-131, and they may obscure lower uptake regions nearby, such as metastatic spread to lymph nodes. In this paper, a deconvolution method based on the point spread function was combined with a priori regularization to suppress the spoke artifacts and to improve the diagnostic accuracy in clinical studies.[Methods] This study is based on the NET632 SPECT system with the corresponding high-energy general purpose collimator. The collected data follow the Poisson distribution, and they consist of two parts, a forward projection of the true activity distribution and the scatter data. The forward projection progress can be well modeled using a shift-invariant PSF (point spread function). An objective function is built based on the aforementioned approximation, and a priori function is introduced to regularize the reconstruction. A monotonic and convergent algorithm is derived to iteratively solve the objective function. In contrast, the conventional deconvolution method regularizes the solution using a total variation term, and the objective function is optimized based on the "one-step-late" algorithm; thus, nonnegativity and convergence can not be guaranteed. The triple-energy window method is employed to estimate scattering data, and PSFs of different sizes are generated based on Monte Carlo simulations. Simulated NEMA torso phantom data are reconstructed with different parameters to validate the monotonicity and convergence of the proposed method. Moreover, the dataset is also used to evaluate the effects of PSF size and regularization strength on reconstruction images. Normalized spoke counts and background noise are calculated for quantitative comparison. Simulation data are also used to compare the reconstruction performance of the proposed method and the conventional deconvolution method. With the optimized parameters determined by simulation data, the proposed method is further validated by clinical point data and volunteer data.[Results] With different reconstruction parameters, the objective function value increased monotonically, and the image differences between two adjacent iterations rapidly reduced to a value close to zero. The simulation study also demonstrated that a 127?27 PSF size could provide performance similar to a 255?55 PSF size, which was significantly better than 63?3 and 31?1 PSF sizes. A study on different regularization strengths suggested an optimized regularization parameter, 0.01. When the PSF size and regularization parameter were set as 127?27 and 0.01, the mean spoke counts could be reduced to 4% of the original value with a low background noise level. A comparison study based on simulation data showed the superiority of the proposed method over the conventional deconvolution method. The clinical point data and volunteer data also validated the performance of the proposed method, and the mean spoke counts could be reduced to 35% and 28% of the original values, respectively.[Conclusions] The proposed method suppresses the spoke artifacts in iodine-131 imaging using a PSF that models the physical response, and it also introduces a priori regularization to suppress noise amplified by deconvolution. The derived algorithm can guarantee the monotonicity and convergence of the iterative reconstruction. Studies on simulation data and clinical data have demonstrated that the proposed method can achieve the desired performance and is expected to improve the diagnostic accuracy in clinical studies.
Key wordsiodine-131    single photon emission computed tomography    "spoke" artifacts    deconvolution    a priori regularization
收稿日期: 2022-06-10      出版日期: 2023-04-23
基金资助:核能开发科研项目(〔2019〕1342号);国家重大科研仪器研制项目(81727807);国家重点研发计划项目(2016YFC0105405,2019YFF0302503);核退役科研项目(〔2018〕1521号)
通讯作者: 刘亚强,研究员,E-mail:liuyaqiang@tsinghua.edu.cn      E-mail: liuyaqiang@tsinghua.edu.cn
作者简介: 程李(1992—),男,博士。
引用本文:   
程李, 刘帆, 高丽蕾, 刘辉, 刘亚强. 碘-131 SPECT平片成像伪影校正算法[J]. 清华大学学报(自然科学版), 2023, 63(5): 802-810.
CHENG Li, LIU Fan, GAO Lilei, LIU Hui, LIU Yaqiang. Artifacts correction algorithm for iodine-131 SPECT planar imaging. Journal of Tsinghua University(Science and Technology), 2023, 63(5): 802-810.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2022.26.060  或          http://jst.tsinghuajournals.com/CN/Y2023/V63/I5/802
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] AHMADZADEHFAR H, BIERSACK H J, HERRMANN K. Clinical applications of SPECT-CT[M]. Berlin:Springer, 2014.
[2] 金永杰, 马天予. 核医学仪器与方法[M]. 哈尔滨:哈尔滨工程大学出版社, 2010. JIN Y J, MA T Y. Nuclear medicine instruments and methods[M]. Harbin:Harbin Engineering University Press, 2010. (in Chinese)
[3] AVRAM A M. Radioiodine scintigraphy with SPECT/CT:An important diagnostic tool for thyroid cancer staging and risk stratification[J]. Journal of Nuclear Medicine Technology, 2014, 42(3):170-180.
[4] AHMED N, NIYAZ K, BORAKATI A, et al. Hybrid SPECT/CT imaging in the management of differentiated thyroid carcinoma[J]. Asian Pacific Journal of Cancer Prevention:APJCP, 2018, 19(2):303-308.
[5] BARRACK F, SCUFFHAM J, MCQUAID S. Septal penetration correction in 131I imaging following thyroid cancer treatment[J]. Physics in Medicine & Biology, 2018, 63(7):075012.
[6] DEY N, BLANC-FERAUD L, ZIMMER C, et al. Richardson-Lucy algorithm with total variation regularization for 3D confocal microscope deconvolution[J]. Microscopy Research and Technique, 2006, 69(4):260-266.
[7] LOENING A M, GAMBHIR S S. AMIDE:A free software tool for multimodality medical image analysis[J]. Molecular Imaging, 2003, 2(3):131-137.
[8] ZHAO W R, WANG X Q, LIANG Y K, et al. Initial evaluation of three novel quantiative imaging utilities from a newly developed SPECT camera in China[J]. The Journal of Nuclear Medicine, 2018, 59(S1):219.
[9] LANGE K, HUNTER D R, YANG I. Optimization transfer using surrogate objective functions[J]. Journal of Computational and Graphical Statistics, 2000, 9(1):1-20.
[10] WANG G B, QI J Y. Penalized likelihood PET image reconstruction using patch-based edge-preserving regularization[J]. IEEE Transactions on Medical Imaging, 2012, 31(12):2194-2204.
[11] HUTTON B F, BUVAT I, BEEKMAN F J. Review and current status of SPECT scatter correction[J]. Physics in Medicine & Biology, 2011, 56(14):R85-R112.
[12] DEWARAJA Y K, LJUNGBERG M, KORAL K F. Characterization of scatter and penetration using Monte Carlo simulation in 131I imaging[J]. The Journal of Nuclear Medicine, 2000, 41(1):123-130.
[13] JAN S, SANTIN G, STRUL D, et al. GATE:A simulation toolkit for PET and SPECT[J]. Physics in Medicine & Biology, 2004, 49(19):4543-4561.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn