Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2024, Vol. 64 Issue (1): 55-62    DOI: 10.16511/j.cnki.qhdxxb.2023.21.019
  车辆与交通 本期目录 | 过刊浏览 | 高级检索 |
基于多元自适应回归样条的汇合决策行为模型
李根1, 翟伟1, 黄海博1, 任皎龙2, 王登忠3, 邬岚1
1. 南京林业大学 汽车与交通工程学院, 南京 210037;
2. 山东理工大学 建筑工程学院, 淄博 255000;
3. 浙江省交通运输科学研究院, 杭州 310023
Merging decision behavior model based on multivariate adaptive regression splines
LI Gen1, ZHAI Wei1, HUANG Haibo1, REN Jiaolong2, Wang Dengzhong3, WU Lan1
1. College of Auto and Traffic Engineering, Nanjing Forestry University, Nanjing 210037, China;
2. School of Civil and Architectural Engineering, Shandong University of Technology, Zibo 255000, China;
3. Zhejiang Scientific Research Institute of Transport, Hangzhou 310023, China
全文: PDF(2764 KB)   HTML 
输出: BibTeX | EndNote (RIS)      
摘要 为研究高速公路车辆汇合决策行为,采用一种非参数回归模型——多元自适应回归样条(multiple adaptive regression splines,MARS)模型建立了汇合决策行为模型。同时,采用美国下一代仿真(next generation simulation,NGSIM)项目中搜集的车辆轨迹数据US-101数据集,提取了速度差、纵向间距、横向位置和车线碰撞时间等参数作为影响变量,进行训练和预测,并与分类回归树、梯度提升决策树、随机森林、逻辑回归等模型进行对比。研究结果表明:汇合车辆与主线车道前车之间的速度差对汇合决策行为影响最大;MARS模型和梯度提升决策树模型对汇合决策行为的预测错误率分别低至0.141和0.138,准确性略高于分类回归树、随机森林和逻辑回归模型,但MARS模型的复杂度远低于梯度提升决策树模型,且能够生成显性表达式,反映影响变量之间的交互作用,利于工程应用。MARS模型能够准确预测汇合决策行为,可用于车辆辅助驾驶及自动驾驶系统。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李根
翟伟
黄海博
任皎龙
王登忠
邬岚
关键词 公路运输汇合决策行为多元自适应回归样条交织区自动驾驶    
Abstract:[Objective] Weaving areas are bottlenecks of freeways, and lane-changing behavior is one of the main reasons for the capacity decline and traffic congestion in weaving areas. Frequent merging behaviors may lead to traffic flow disturbance upstream from the weaving area, affect the normal running of surrounding vehicles, and in severe cases may even lead to multi-vehicle accidents. An in-depth understanding of merging decision behavior in the weaving area is essential to reduce the vehicle collision risk and improve the traffic safety level. A newly developed nonparametric regression model-multiple adaptive regression splines (MARS)-is adopted to model the gap selection decision during merging to study the merging behavior in the freeway weaving area.[Methods] This study investigates complex interactions between merging and surrounding vehicles during merging. Trajectory data are extracted from the US-101 dataset provided by the dataset of next generation simulation program, and the symmetric exponential moving average filter method is used to smooth the data. Merging vehicles are influenced by surrounding vehicles in the auxiliary and adjacent main lanes. Thus, explanatory variables such as speeds, speed differences, gaps, and locations are calculated. Longitudinal and lateral collision risk indicators and time-to-collision are also considered to study the influence of collision risk on merging behaviors. Finally, 925 observations are obtained and randomly divided into two subdatasets to train and test the model. The MARS model is compared with four state-of-the-art machine learning techniques:classification and regression tree, gradient boosting decision tree (GBDT), random forest, and logistic regression models.[Results] The speed difference between the merging vehicle and vehicles in the adjacent main lane played the most important role in gap selection. Interactions of influencing variables were observed. In particular, the best interaction level was 4 in the final model. The comparison showed that GBDT and MARS had the lowest rates of prediction error at 0.138 and 0.141, respectively.However, MARS could provide explicit expression functions that reflect the interaction between the influencing variables, which was beneficial to engineering applications.[Conclusions] By using the optimal variable transformation and potential variable interaction in the regression modeling scheme, MARS could easily handle complex nonlinear relationships in merging behaviors. This model could accurately predict the gap selection behavior and provide explicit expression functions, thus simplifying its understanding and application to driver assistance systems and autonomous driving systems.
Key wordshighway transportation    merging decision behavior    multiple adaptive regression splines    weaving area    autonomous driving
收稿日期: 2023-02-01      出版日期: 2023-11-30
基金资助:江苏省高等学校基础科学(自然学科)面上项目(21KJB580014);国家自然科学基金资助项目(51408314)
通讯作者: 邬岚,副教授,wulan@njfu.edu.cn     E-mail: wulan@njfu.edu.cn
作者简介: 李根(1989—),男,讲师。
引用本文:   
李根, 翟伟, 黄海博, 任皎龙, 王登忠, 邬岚. 基于多元自适应回归样条的汇合决策行为模型[J]. 清华大学学报(自然科学版), 2024, 64(1): 55-62.
LI Gen, ZHAI Wei, HUANG Haibo, REN Jiaolong, Wang Dengzhong, WU Lan. Merging decision behavior model based on multivariate adaptive regression splines. Journal of Tsinghua University(Science and Technology), 2024, 64(1): 55-62.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2023.21.019  或          http://jst.tsinghuajournals.com/CN/Y2024/V64/I1/55
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] CHEN D J, AHN S. Capacity-drop at extended bottlenecks:Merge, diverge, and weave[J]. Transportation Research Part B:Methodological, 2018, 108:1-20.
[2] ZHENG Z D, AHN S, MONSERE C M. Impact of traffic oscillations on freeway crash occurrences[J]. Accident Analysis & Prevention, 2010, 42(2):626-636.
[3] GIPPS P G. A model for the structure of lane-changing decisions[J]. Transportation Research Part B:Methodological, 1986, 20(5):403-414.
[4] YANG Q, KOUTSOPOULOS H N. A microscopic traffic simulator for evaluation of dynamic traffic management systems[J]. Transportation Research Part C:Emerging Technologies, 1996, 4(3):113-129.
[5] SINGH K, LI B B. Discrete choice modelling for traffic densities with lane-change behaviour[J]. Procedia-Social and Behavioral Sciences, 2012, 43:367-374.
[6] SUN J, OUYANG J X, YANG J H. Modeling and analysis of merging behavior at expressway on-ramp bottlenecks[J]. Transportation Research Record:Journal of the Transportation Research Board, 2014, 2421(1):74-81.
[7] HOU Y, EDARA P, SUN C. Modeling mandatory lane changing using Bayes classifier and decision trees[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(2):674-655.
[8] ZHENG J, SUZUKI K, FUJITA M. Predicting driver's lane-changing decisions using a neural network model[J]. Simulation Modelling Practice and Theory, 2014, 42:73-83.
[9] MOTAMEDIDEHKORDI N, AMINI S, HOFFMANN S, et al. Modeling tactical lane-change behavior for automated vehicles:A supervised machine learning approach[C]//2017 IEEE International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS). Naples, Italy:IEEE, 2017:268-273.
[10] DÍAZ-ÁLVAREZ A, CLAVIJO M, JIMÉNEZ F, et al. Modelling the human lane-change execution behaviour through multilayer perceptrons and convolutional neural networks[J]. Transportation Research Part F:Traffic Psychology and Behaviour, 2018, 56:134-148.
[11] XIE D F, FANG Z Z, JIA B, et al. A data-driven lane-changing model based on deep learning[J]. Transportation Research Part C:Emerging Technologies, 2019, 106:41-60.
[12] 王俊彦, 蔡骏宇. 基于RBF神经网络的车辆安全换道时机决策模型研究[J]. 重庆理工大学学报(自然科学版), 2019, 33(11):47-51, 80. WANG J Y, CAI J Y. Research on modelling vehicle safety lane-changing timing decision based on RBF neural network[J]. Journal of Chongqing Institute of Technology, 2019, 33(11):47-51, 80. (in Chinese)
[13] 徐兵, 刘潇, 汪子扬, 等. 采用梯度提升决策树的车辆换道融合决策模型[J]. 浙江大学学报(工学版), 2019, 53(6):1171-1181. XU B, LIU X, WANG Z Y, et al. Fusion decision model for vehicle lane change with gradient boosting decision tree[J]. Journal of Zhejiang University (Engineering Science), 2019, 53(6):1171-1181. (in Chinese)
[14] 曹波, 李永乐, 赵凯, 等. 基于行为识别的智能车纵向决策研究[J]. 交通运输系统工程与信息, 2020, 20(3):61-66. CAO B, LI Y L, ZHAO K, et al. Intelligent vehicle longitudinal decision making based on behavior recognition[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(3):61-66. (in Chinese)
[15] 崔洁茗, 余贵珍, 周彬, 等. 基于神经网络的车辆强制换道预测模型[J]. 北京航空航天大学学报, 2022, 48(5):890-897. CUI J M, YU G Z, ZHOU B, et al. Mandatory lane change decision-making model based on neural network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(5):890-897. (in Chinese)
[16] 赵树恩, 王金祥, 李玉玲. 基于多目标优化的智能车辆换道轨迹规划[J]. 交通运输工程学报, 2021, 21(2):232-242. ZHAO S E, WANG J X, LI Y L. Lane changing trajectory planning of intelligent vehicle based on multiple objective optimization[J]. Journal of Traffic and Transportation Engineering, 2021, 21(2):232-242. (in Chinese)
[17] 李根, 翟伟, 邬岚, 等. 基于多元自适应回归样条的交织区合流交互作用研究[J]. 东南大学学报(自然科学版), 2022, 52(4):796-805. LI G, ZHAI W, WU L, et al. Research on merging interactions in weaving area based on multiple adaptive regression splines[J]. Journal of Southeast University (Natural Science Edition), 2022, 52(4):796-805. (in Chinese)
[18] DAS A, KHAN N, AHMED M M. Nonparametric multivariate adaptive regression splines models for investigating lane-changing gap acceptance behavior utilizing strategic highway research program 2 naturalistic driving data[J]. Transportation Research Record:Journal of the Transportation Research Board, 2020, 2674(5):223-238.
[19] PUNZO V, BORZACCHIELLO M T, CIUFFO B. On the assessment of vehicle trajectory data accuracy and application to the next generation simulation (NGSIM) program data[J]. Transportation Research Part C:Emerging Technologies, 2011, 19(6):1243-1262.
[20] LI G, FANG S, MA J X, et al. Modeling merging acceleration and deceleration behavior based on gradient-boosting decision tree[J]. Journal of Transportation Engineering, Part A:Systems, 2020, 146(7):05020005.
[21] LI M, LI Z B, XU C C, et al. Short-term prediction of safety and operation impacts of lane changes in oscillations with empirical vehicle trajectories[J]. Accident Analysis & Prevention, 2020, 135:105345.
[1] 田野, 裴华鑫, 晏松, 张毅. 车路协同环境下行车风险场模型的扩展与应用[J]. 清华大学学报(自然科学版), 2022, 62(3): 447-457.
[2] 王庭晗, 罗禹贡, 刘金鑫, 李克强. 基于考虑状态分布的深度确定性策略梯度算法的端到端自动驾驶策略[J]. 清华大学学报(自然科学版), 2021, 61(9): 881-888.
[3] 赵蕾蕾,李翀,季林红,杨铁牛. 基于虚拟现实的自动驾驶模式中晕动受试者的脑电特征[J]. 清华大学学报(自然科学版), 2020, 60(12): 993-998.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn