Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2024, Vol. 64 Issue (3): 591-600    DOI: 10.16511/j.cnki.qhdxxb.2023.21.024
  计算机科学与技术 本期目录 | 过刊浏览 | 高级检索 |
低成本大规模直播流量工程
邰进1, 刘辰屹2,4, 杨芫2,4, 王旸旸3, 徐明伟2,3,4
1. 清华大学 深圳国际研究生院, 深圳 518055;
2. 清华大学 计算机科学与技术系, 北京 100084;
3. 清华大学 网络科学与网络空间研究院, 北京 100084;
4. 清华大学 北京信息科学与技术国家研究中心, 北京 100084
Low-cost traffic engineering for large-scale live streaming
TAI Jin1, LIU Chenyi2,4, YANG Yuan2,4, WANG Yangyang3, XU Mingwei2,3,4
1. Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China;
2. Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China;
3. Institute for Network Sciences and Cyberspace, Tsinghua University, Beijing 100084, China;
4. Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China
全文: PDF(6875 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 近年来,基于直播的网络应用大量出现,此类应用对互联网服务质量的要求更严格。目前,虽然一些专用骨干网可以为此类应用提供优质服务,但是服务价格昂贵,且无法覆盖世界各地的所有用户。因此,服务提供商选择依赖Overlay网络或云计算、雾计算和边缘计算等技术提升网络性能,改善用户体验。该文研究了用于大规模直播的Overlay网络中基于成本敏感的流量工程问题。经实际调研可知,成本由服务器的峰值数据速率决定,因此该流量工程问题涉及时间序列的路由决策。首先,将流量工程问题形式化,转化为一系列基于时间序列的整数规划。其次,提出了以可微函数逼近不可微函数的方法,并使用Lagrange乘子法和梯度下降算法有效求解该整数规划。最后,提出基于成本敏感的方案——在线路由算法LiveTE,从运行的Overlay网络收集真实数据,并通过数值模拟评估了LiveTE。结果表明:与现有方案相比,LiveTE的总成本降低幅度达52%,平均传输延时降低幅度达6%以上。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邰进
刘辰屹
杨芫
王旸旸
徐明伟
关键词 流量工程Overlay网络直播流服务    
Abstract:[Objective] Recent years have witnessed a remarkable rise in popularity among livestream-based network applications, prompting higher expectations for the quality of internet services. However, the public internet infrastructure's highest quality services and shared resources often fail to meet the demanding data transmission requirements of livestreaming applications. The objective of this research is to address the problem of cost-sensitive traffic engineering (TE) in Overlay networks for large-scale livestreaming, providing economically efficient livestreaming flow transmission services while minimizing costs and adhering to quality of service (QoS) requirements. By achieving these objectives, service providers can enhance network performance, optimize resource allocation, and deliver high-quality livestreaming to a wide user base.[Methods] To address the cost-sensitive traffic engineering problem, a comprehensive approach based on time-series optimization and approximate differentiable modeling is adopted. The scenario considered in this research is an application-layer transport network comprising forwarding nodes and virtual links. Business flows are transmitted along paths between forwarding nodes, and these paths may include multiple virtual paths to enhance performance. The problem is formulated as a time-series optimization problem, necessitating the decomposition into a series of time-series-based integer programming problems to simplify the solution process. To handle the nondifferentiable aspects of the problem, an innovative approximating differentiable model is proposed. Path selection is approximated with the Gumbel-Softmax function, a technique allowing for differentiable path selection. Moreover, differentiable functions are employed to approximate the cost and transmission delay functions, ensuring smooth optimization. The Lagrange multiplier method is utilized to transform the problem into an efficient optimization framework. An online routing algorithm (LiveTE) is developed to solve for the set of decision paths, utilizing a gradient descent algorithm to solve the optimization problem iteratively.[Results] The effectiveness of the LiveTE algorithm was evaluated via extensive experimentation and numerical simulations using real data obtained from a running-overlay livestreaming network. The results exhibited considerable cost reductions and improved transmission delay compared to existing methods. LiveTE achieved a remarkable total cost reduction of 52% while simultaneously lowering the average transmission delay by over 6%, highlighting its efficacy in enabling economically efficient livestreaming flow transmission services in overlay networks. The algorithm's ability to optimize resource allocation and improve QoS in large-scale livestreaming scenarios was evident, allowing service providers to enhance network performance and deliver high-quality livestreaming experiences to a diverse user base.[Conclusions] In summary, a comprehensive approach is presented to address the cost-sensitive traffic engineering problem in overlay networks for large-scale livestreaming applications. By formulating the problem as a time-series optimization problem and employing an approximating differentiable model, the proposed LiveTE algorithm achieves remarkable cost reductions while simultaneously improving transmission delay and QoS. The results contribute to the economically efficient delivery of high-quality livestreaming services, allowing service providers to optimize resource allocation and enhance network performance. Furthermore, the proposed LiveTE algorithm provides a valuable solution for service providers seeking to enhance user experience, mitigate costs, and maximize the utilization of overlay networks in livestreaming-based applications.
Key wordstraffic engineering    Overlay network    service of live streaming
收稿日期: 2023-03-13      出版日期: 2024-03-06
基金资助:国家自然科学基金资助项目(62132004,61872426)
通讯作者: 徐明伟,教授,E-mail:xumw@tsinghua.edu.cn     E-mail: xumw@tsinghua.edu.cn
作者简介: 邰进(1996—),男,硕士研究生。
引用本文:   
邰进, 刘辰屹, 杨芫, 王旸旸, 徐明伟. 低成本大规模直播流量工程[J]. 清华大学学报(自然科学版), 2024, 64(3): 591-600.
TAI Jin, LIU Chenyi, YANG Yuan, WANG Yangyang, XU Mingwei. Low-cost traffic engineering for large-scale live streaming. Journal of Tsinghua University(Science and Technology), 2024, 64(3): 591-600.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2023.21.024  或          http://jst.tsinghuajournals.com/CN/Y2024/V64/I3/591
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] SECTOR S, ITU O F. Series G:Transmission systems and media, digital systems and networks international telephone connections and circuits-general definitions[R]. Genève:International Telecommunication Union, 2000.
[2] CHOY S, WONG B, SIMON G, et al. The brewing storm in cloud gaming:A measurement study on cloud to end-user latency[C]//201211th Annual Workshop on Network and Systems Support for Games (NetGames). New York, USA:IEEE, 2012:1-6.
[3] SALAMATIAN L, ANDERSON S, MATTHEWS J, et al. Curvature-based analysis of network connectivity in private backbone infrastructures[J]. Proceedings of the ACM on Measurement and Analysis of Computing Systems, 2022, 6(1):5.
[4] GHOSH A, HA S, CRABBE E, et al. Scalable multi-class traffic management in data center backbone networks[J]. IEEE Journal on Selected Areas in Communications, 2013, 31(12):2673-2684.
[5] LIAO X, JIN H, LIU Y, et al. AnySee:Peer-to-peer live streaming[C]//Proceedings of the IEEE INFOCOM 2006. 25th IEEE International Conference on Computer Communications. New York, USA:IEEE, 2006:1-10.
[6] PIANESE F, PERINO D, KELLER J, et al. PULSE:An adaptive, incentive-based, unstructured P2P live streaming system[J]. IEEE Transactions on Multimedia, 2007, 9(8):1645-1660.
[7] ANDERSEN D, BALAKRISHNAN H, KAASHOEK F, et al. Resilient overlay networks[C]//Proceedings of the Eighteenth ACM Symposium on Operating Systems Principles. Banff, Canada:Association for Computing Machinery, 2001:131-145.
[8] SAVAGE S, COLLINS A, HOFFMAN E, et al. The end-to-end effects of Internet path selection[C]//Proceedings of Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication. Cambridge, USA:Association for Computing Machinery, 1999:289-299.
[9] MUKERJEE M K, NAYLOR D, JIANG J C, et al. Practical, real-time centralized control for CDN-based live video delivery[C]//Proceedings of 2015 ACM Conference on Special Interest Group on Data Communication. London, UK:Association for Computing Machinery, 2015:311-324.
[10] ZHAO M C, ADITYA P, CHEN A, et al. Peer-assisted content distribution in akamai netsession[C]//Proceedings of 2013 Conference on Internet Measurement Conference. Barcelona, Spain:Association for Computing Machinery, 2013:31-42.
[11] JIANG J C, DAS R, ANANTHANARAYANAN G, et al. Via:Improving internet telephony call quality using predictive relay selection[C]//Proceedings of 2016 ACM SIGCOMM Conference. Florianopolis, Brazil:Association for Computing Machinery, 2016:286-299.
[12] QIAN L, LUO Z G, DU Y J, et al. Cloud computing:An overview[C]//First International Conference, CloudCom 2009 on Cloud Computing. Beijing, China:Springer, 2009:626-631.
[13] YIN H, LIU X N, ZHAN T Y, et al. Design and deployment of a hybrid CDN-P2P system for live video streaming:Experiences with LiveSky[C]//Proceedings of the 17th ACM International Conference on Multimedia. Beijing, China:Association for Computing Machinery, 2009:25-34.
[14] LI J Y, LI Z Y, LU R, et al. LiveNet:A low-latency video transport network for large-scale live streaming[C]//Proceedings of ACM SIGCOMM 2022 Conference. Amsterdam, Netherlands:Association for Computing Machinery, 2022:812-825.
[15] PATHAN M, BUYYA R. A taxonomy of CDNs[M]//BUYYA R, PATHAN M, VAKALI A. Content Delivery Networks. Berlin:Springer, 2008:33-77.
[16] LU Z H, WANG Y, YANG Y R. An analysis and comparison of CDN-P2P-hybrid content delivery system and model[J]. Journal of Communications, 2012, 7(3):232-245.
[17] DAI J, CHANG Z Y, CHAN S H G. Delay optimization for multi-source multi-channel overlay live streaming[C]//2015 IEEE International Conference on Communications. London, UK:IEEE, 2015:6959-6964.
[18] HE T, ZHU K X, CHEN Z P, et al. Popularity-guided cost optimization for live streaming in mobile edge computing[J]. Wireless Communications and Mobile Computing, 2022, 2022:5562995.
[19] WANG B L, ZHANG X Y, WANG G, et al. Anatomy of a personalized livestreaming system[C]//Proceedings of 2016 Internet Measurement Conference. Santa Monica, USA:Association for Computing Machinery, 2016:485-498.
[20] JAIN P, KUMAR S, WOODERS S, et al. Skyplane:Optimizing transfer cost and throughput using cloud-aware overlays[C]//20th USENIX Symposium on Networked Systems Design and Implementation. Boston, USA:USENIX Association, 2023:1375-1389.
[21] SINGH R, AGARWAL S, CALDER M, et al. Cost-effective cloud edge traffic engineering with cascara[C]//Proceedings of the 18th USENIX Symposium on Networked Systems Design and Implementation. New York, USA:USENIX Association, 2021:201-216.
[22] LUMEZANU C, BADEN R, SPRING N, et al. Triangle inequality variations in the internet[C]//Proceedings of the 9th ACM SIGCOMM Conference on Internet Measurement. Chicago, USA:Association for Computing Machinery, 2009:177-183.
[23] POTAPCZYNSKI A, LOAIZA-GANEM G, CUNNIN- GHAM J P. Invertible Gaussian reparameterization:Revisiting the gumbel-softmax[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems. Vancouver, Canada:Curran Associates Inc., 2020:1032.
[24] 周静静, 杨家海, 杨扬, 等. 流量矩阵估算的研究[J]. 软件学报, 2007, 18(11):2669-2682. ZHOU J J, YANG J H, YANG Y, et al. Research on traffic matrix estimation[J]. Journal of Software, 2007, 18(11):2669-2682. (in Chinese)
[25] APPLEGATE D, COHEN E. Making intra-domain routing robust to changing and uncertain traffic demands:Understanding fundamental tradeoffs[C]//Proceedings of 2003 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications. Karlsruhe, Germany:Association for Computing Machinery, 2003:313-324.
[26] 廖虎. 高效内容分发网络中服务器优化部署及路由策略[D]. 成都:电子科技大学, 2018. LIAO H. Optimizing server deployment and routing strategy in efficient content distribution network[D]. Chengdu:University of Electronic Science and Technology of China, 2018. (in Chinese)
[27] 田铭. 基于流量均衡的路由优化问题研究[D]. 北京:解放军信息工程大学, 2010. TIAN M. Research on routing optimization issues based on traffic balancing[D]. Beijing:Information Engineering University, 2010. (in Chinese)
[28] 林徐, 张健. BGP与OSPF动态路由震荡及其解决方法[J]. 太原师范学院学报(自然科学版), 2018, 17(4):50-55. LIN X, ZHANG J. BGP and OSPF dynamic route flapping and its solution method[J]. Journal of Taiyuan Normal University (Natural Science Edition), 2018, 17(4):50-55. (in Chinese)
[1] 徐明伟, 高冰洁. 基于域间二维路由的流量工程模型[J]. 清华大学学报(自然科学版), 2017, 57(12): 1233-1238.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn