Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2024, Vol. 64 Issue (2): 294-302    DOI: 10.16511/j.cnki.qhdxxb.2023.21.25
  水利水电工程 本期目录 | 过刊浏览 | 高级检索 |
基于多角度投影方法的砂土颗粒三维形态表征
谢维强1,2, 张晓平3, 刘晓丽1, 周小雄1, 刘泉声3
1. 清华大学 水沙科学与水利水电工程国家重点实验室, 北京 100084;
2. 深地科学与工程云龙湖实验室, 徐州 221116;
3. 武汉大学 岩土与结构工程安全湖北省重点实验室, 武汉 430072
Three-dimensional morphological characterization of sand particles based on a multiangle projection method
XIE Weiqiang1,2, ZHANG Xiaoping3, LIU Xiaoli1, ZHOU Xiaoxiong1, LIU Quansheng3
1. State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China;
2. Yunlong Lake Laboratory of Deep Underground Science and Engineering, Xuzhou 221116, China;
3. The Key Laboratory of Safety for Geotechnical and Structural Engineering of Hubei Province, Wuhan University, Wuhan 430072, China
全文: PDF(20936 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 砂土颗粒的形态学特征(尺寸和形状)对于评估砂土材料的力学特性至关重要,因此准确地量化其三维形态学特征是研究砂土材料力学特性的前提工作。相比三维测试(表征)方法,二维测试(表征)方法具有测试方式多、程序简单、成本低等优点。为研究二维图像对砂土颗粒三维形态的表征,利用三维激光扫描技术获取砂土颗粒的三维点云数据;然后利用计算机算法重构砂粒的三维模型,准确快速地自动提取砂粒的三维形态特征;借助算法获取了随机单一投影法、最大最小投影面积法(选自1 000张投影)和三正交方向投影法下的砂粒二维形态参数;分析了二维参数与三维参数之间的相关关系,提出了基于砂土颗粒二维形态特征表征三维形态特征的可靠方法。结果表明,砂土颗粒的三维尺寸(长、宽、厚)可使用相应的二维尺寸估算(线性拟合系数R2=0.735~0.994);3种投影方法中,最大最小投影面积法和三正交方向投影法可准确地估算砂土颗粒的三维形态,为砂土材料的快速定量化表征提供了实用方法。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谢维强
张晓平
刘晓丽
周小雄
刘泉声
关键词 砂土颗粒形态特征三维激光扫描二维投影数字图像处理    
Abstract:[Objective] The morphological characteristics (size and shape) of sand particles are critical for the evaluation of the mechanical properties of sand. Accurate quantification of these morphological characteristics is a prerequisite to investigating the mechanical properties of sand. Compared with the three-dimensional (3-D) test method, the two-dimensional (2-D) counterpart has the advantages of rich test types, simple procedures, and low cost. [Methods] To investigate the feasibility of 2-D images for 3-D morphological characterization of sand particles, 3-D laser scanning technology is employed in the present study to obtain the point cloud data of sand particles. Furthermore, a computer algorithm is developed to reconstruct the 3-D models of the sand particles. Thus, the 3-D morphological characteristics of the particles are accurately and quickly obtained. Three 2-D methods, namely the random single projection method, maximum and minimum projected area method (selected from 1 000 projections), and three orthogonal direction projection methods, are proposed for obtaining the 2-D morphological parameters of sand particles. [Results] Computer algorithms for reconstructing the 3-D model of sand particles based on a point cloud were proposed. The algorithms were used to automatically acquire the 3-D and 2-D morphological parameters. Thereafter, the correlations between the 3-D and 2-D parameters were analyzed. A practical method was proposed to obtain the 3-D morphological characteristics of the granular material based on the corresponding 2-D morphological characteristics. [Conclusions] The results reveal that there is a large gap between the 2-D parameters obtained from various angle projections, especially the area parameters in various projections. Notably, the error between the maximum and minimum area is as high as 40%. The random single angle projection method does not provide accurate 3-D information. A strong linear correlation exists between the 3-D and 2-D size parameters of the particles, and a moderate correlation exists between the shape parameters. An empirical relationship for estimating the 3-D morphology of sand particles using 2-D parameters is established. The 3-D parameters, namely the length, width, and thickness of the granular material, can be estimated using the corresponding 2-D parameters (R2=0.735-0.994). The fitting effects of the particle size parameters are better than those of the shape parameters. Additionally, the fitting effects of the maximum and minimum projected area and three orthogonal directional projection methods are better than those of the random single projection method. Among the three 2-D methods, the maximum and minimum projected area and three orthogonal direction projection methods can more accurately estimate the 3-D morphological characteristics of sand particles; thus, these are practical methods for the morphological quantification of granular materials.
Key wordssand particle    morphological characteristics    three-dimensional (3-D) laser scanning    two-dimensional (2-D) projection    digital image processing
收稿日期: 2023-02-06      出版日期: 2023-12-28
ZTFLH:  TU443  
基金资助:国家自然科学基金面上项目(41941019,51978541,52079068)
通讯作者: 张晓平,教授,E-mail:jxhkzhang@163.com     E-mail: jxhkzhang@163.com
作者简介: 谢维强(1994-),男,助理研究员。
引用本文:   
谢维强, 张晓平, 刘晓丽, 周小雄, 刘泉声. 基于多角度投影方法的砂土颗粒三维形态表征[J]. 清华大学学报(自然科学版), 2024, 64(2): 294-302.
XIE Weiqiang, ZHANG Xiaoping, LIU Xiaoli, ZHOU Xiaoxiong, LIU Quansheng. Three-dimensional morphological characterization of sand particles based on a multiangle projection method. Journal of Tsinghua University(Science and Technology), 2024, 64(2): 294-302.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2023.21.25  或          http://jst.tsinghuajournals.com/CN/Y2024/V64/I2/294
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] 高金翎. 砂土抗剪强度的主要影响因素及其研究现状分析[J]. 科教文汇, 2013(33):110-115, 122. GAO J L. Analysis of the main factors on the shear strength of sandy soil and the current research situation [J]. The Science Education Article Collects, 2013(33):110-115, 122. (in Chinese)
[2] 周博. 基于能量耗散机制的砂土微观力学特性研究[D]. 武汉:华中科技大学, 2013. ZHOU B. Analysis of the microscopic mechanical property of sandy soils based on the energy dissipation mechanism [D]. Wuhan:Huazhong University of Science and Technology, 2013. (in Chinese)
[3] 彭仁. 颗粒形状对砂土力学性质影响的PFC模拟及定量分析研究[D]. 银川:宁夏大学, 2011. PENG R. PFC simulation and quantitative analysis of influence of particle shape on mechanical properties of sand [D]. Yinchuan:Ningxia University, 2011. (in Chinese)
[4] 刘清秉, 项伟, BUDHU M, 等. 砂土颗粒形状量化及其对力学指标的影响分析[J]. 岩土力学, 2011, 32(S1):190-197. LIU Q B, XIANG W, BUDHU M, et al. Study of particle shape quantification and effect on mechanical property of sand [J]. Rock and Soil Mechanics, 2011, 32(S1):190-197. (in Chinese)
[5] 付茹, 胡新丽, 周博, 等. 砂土颗粒三维形态的定量表征方法[J]. 岩土力学, 2018, 39(2):483-490. FU R, HU X L, ZHOU B, et al. A quantitative characterization method of 3D morphology of sand particles [J]. Rock and Soil Mechanics, 2018, 39(2):483-490. (in Chinese)
[6] BARRETT P J. The shape of rock particles, a critical review [J]. Sedimentology, 1980, 27(3):291-303.
[7] 汪轶群. 钙质砂宏细观力学特性试验及离散元模拟[D]. 杭州:浙江大学, 2016. WANG Y Q. Macro-and micro-mechanical behavior of calcareous sand and discrete element method analysis [D]. Hangzhou:Zhejiang University, 2016. (in Chinese)
[8] 孔亮, 彭仁. 颗粒形状对类砂土力学性质影响的颗粒流模拟[J]. 岩石力学与工程学报, 2011, 30(10):2112-2119. KONG L, PENG R. Particle flow simulation of influence of particle shape on mechanical properties of quasi-sands [J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(10):2112-2119. (in Chinese)
[9] 常在, 杨军, 程晓辉. 砂土强度和剪胀性的颗粒力学分析[J]. 工程力学, 2010, 27(4):95-104. CHANG Z, YANG J, CHENG X H. Granular mechanical analysis of the strength and dilatancy of sands [J]. Engineering Mechanics, 2010, 27(4):95-104. (in Chinese)
[10] ZHANG X P, XIE W Q, CAI K Y, et al. Evaluation of rock muck using image analysis and its application in the TBM tunneling [J]. Tunnelling and Underground Space Technology, 2021, 113:103974.
[11] XIE W Q, ZHANG X P, YANG X M, et al. 3D size and shape characterization of natural sand particles using 2D image analysis [J]. Engineering Geology, 2020, 279:105915.
[12] 王步雪岩, 孟庆山, 韦昌富, 等. 多投影面下珊瑚砂砾颗粒形貌量化试验研究[J]. 岩土力学, 2019, 40(10):3871-3878. WANG B X Y, MENG Q S, WEI C F, et al. Quantitative experimental study of the morphology of coral sand and gravel particles under multiple projection surfaces [J]. Rock and Soil Mechanics, 2019, 40(10):3871-3878. (in Chinese)
[13] ASAHINA D, TAYLOR M A. Geometry of irregular particles:Direct surface measurements by 3-D laser scanner [J]. Powder Technology, 2011, 213(1-3):70-78.
[14] LANARO F, TOLPPANEN P. 3D characterization of coarse aggregates [J]. Engineering Geology, 2002, 65(1):17-30.
[15] ERDOǦAN S T, GARBOCZI E J, FOWLER D W. Shape and size of microfine aggregates:X-ray microcomputed tomography vs. laser diffraction [J]. Powder Technology, 2007, 177(2):53-63.
[16] LIN C L, MILLER J D. 3D characterization and analysis of particle shape using X-ray microtomography (XMT) [J]. Powder Technology, 2005, 154(1):61-69.
[17] BAGHERI G H, BONADONNA C, MANZELLA I, et al. On the characterization of size and shape of irregular particles [J]. Powder Technology, 2015, 270:141-153.
[18] YUE Z Q, BEKKING W, MORIN I. Application of digital image processing to quantitative study of asphalt concrete microstructure [M]. Transportation Research Board, 1995.
[19] KWAN A K H, MORA C F, CHAN H C. Particle shape analysis of coarse aggregate using digital image processing [J]. Cement & Concrete Research, 1999, 29(9):1403-1410.
[20] 陈海洋, 汪稔, 李建国, 等. 钙质砂颗粒的形状分析[J]. 岩土力学, 2005, 26(9):1389-1392. CHEN H Y, WANG R, LI J G, et al. Grain shape analysis of calcareous soil [J]. Rock and Soil Mechanics, 2005, 26(9):1389-1392. (in Chinese)
[21] HENTSCHEL M L, PAGE N W. Selection of descriptors for particle shape characterization [J]. Particle & Particle Systems Characterization, 2003, 20(1):25-38.
[22] FERNLUND J M R. Image analysis method for determining 3-D size distribution of coarse aggregates [J]. Bulletin of Engineering Geology & the Environment, 2005, 64(2):159-166.
[23] ALTUHAFI F, O'SULLIVAN C, CAVARRETTA I. Analysis of an image-based method to quantify the size and shape of sand particles [J]. Journal of Geotechnical & Geoenvironmental Engineering, 2013, 139(8):1290-1307.
[24] BLOTT S J, PYE K. Particle shape:A review and new methods of characterization and classification [J]. Sedimentology, 2008, 55(1):31-63.
[25] 王东伟, 陆武萍, 唐朝生, 等. 砂土微观结构样品制备技术及量化方法研究[J]. 岩土力学, 2019, 40(12):4783-4792. WANG D W, LU W P, TANG C S, et al. Sample preparation technique and microstructure quantification method for sandy soil [J]. Rock and Soil Mechanics, 2019, 40(12):4783-4792. (in Chinese)
[26] KOESAWE J. The minimal bounding box [Z/OL]. (2015-2-16) [2023-01-15]. http://www.mathworks.com/matlabcentral/fileexchange/18264-minimal-bounding-box. 2008.
[27] WADELL H. Sphericity and roundness of rock particles [J]. The Journal of Geology, 1933, 41(3):310-331.
[28] WADELL H. Volume, shape, and roundness of rock particles [J]. The Journal of Geology, 1932, 40(5):443-451.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn