Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2023, Vol. 63 Issue (6): 849-864    DOI: 10.16511/j.cnki.qhdxxb.2023.22.002
  公共安全 本期目录 | 过刊浏览 | 高级检索 |
滑坡变形监测预警技术研究进展
邓李政1,2,4, 袁宏永1, 张鸣之1,3,4, 陈建国1
1. 清华大学 工程物理系, 公共安全研究院, 北京 100084;
2. 清华大学 合肥公共安全研究院, 合肥 230601;
3. 中国地质环境监测院(自然资源部地质灾害技术指导中心), 北京 100081;
4. 自然资源部 地质灾害智能监测与风险预警工程技术创新中心, 北京 100081
Research progress on landslide deformation monitoring and early warning technology
DENG Lizheng1,2,4, YUAN Hongyong1, ZHANG Mingzhi1,3,4, CHEN Jianguo1
1. Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University, Beijing 100084, China;
2. Hefei Institute for Public Safety Research, Tsinghua University, Hefei 230601, China;
3. China Institute of Geo-Environment Monitoring(Geological Disaster Technical Guidance Center of Ministry of Natural Resources), Beijing 100081, China;
4. Technology Innovation Centerfor Geohazard Monitoring and Risk Early Warning, Ministry of Natural Resources of the People's Republic of China, Beijing 100081, China
全文: PDF(8468 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 中国滑坡灾害数量多、分布广、危害大,每年约有80%的地质灾害发生在已查明的隐患点范围之外。监测预警是主动防范地质灾害的重要手段。变形是滑坡最为关键的监测参数。该文旨在梳理总结滑坡变形监测技术和预警方法,评述现有研究进展,分析未来发展趋势,为滑坡灾害防控领域的科学研究和工程实践提供借鉴。地表变形监测技术多易受到外界因素干扰,及时性和可靠性难以得到保障。深部变形监测技术直接获取滑面发展破坏信息,能够发现灾变前兆,但现有设备存在成本高、量程小或操作难等问题。滑坡监测为早期预警提供依据,而早期预警能够减少甚至避免人员伤亡和财产损失,区域性气象预警和单体滑坡预警两类预警方法正在逐渐发展完善中。单体滑坡预警常见方法是分析滑坡变形趋势和突变特征,通过速度、加速度等判据的阈值触发不同级别预警。滑坡智能预警模型将机器学习与地质工程交叉融合,有望提升灾害早期预警的准确性和自动化水平。滑坡高质量监测应综合运用多种技术以克服单一技术的局限,而预警模型则越来越关注变形趋势的智能分析。滑坡动力学机制复杂、个性特征明显,广泛适用的预警模型有待进一步探索。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邓李政
袁宏永
张鸣之
陈建国
关键词 滑坡灾害地表变形深部变形综合监测早期预警    
Abstract:[Significance] Landslide hazards are widely distributed in China and are severely harmful. The registered landslide hazards have achieved remarkable benefits in disaster reduction through a comprehensive prevention and control system. However, approximately 80% of all geo-disasters in China still occur outside the scope of identified hazards yearly. Therefore, monitoring and early warning are important means to actively prevent landslide disasters and achieve great success in disaster mitigation owing to promptness, effectiveness, and relatively low-cost advantages. Deformation is the most significant monitoring parameter for landslides and has become a focus and general trend. Landslide deformation monitoring engineering has strict requirements for controlled cost and high reliability to achieve widespread application and accurate early warning. Therefore, the commonly used monitoring instruments focus on surface deformation and rainfall to meet the requirements for easy equipment installation and low implementation cost. However, surface deformation and rainfall are not sufficient conditions to determine the occurrence of landslides. Various challenges exist in the existing monitoring technologies and early warning methods regarding engineering feasibility and performance improvement. Thus, it is important and urgent to summarize the existing research to rationally guide future development.[Progress] The deformation monitoring methods are divided into surface and subsurface monitoring. Most surface deformation monitoring technologies are vulnerable to the interference of terrain, environment, and other factors; therefore, their timeliness and reliability are not easily guaranteed. Additionally, slope subsurface deformation monitoring technologies can directly obtain the development and damage information of the sliding surface; thus, they can recognize the disaster precursor. Subsurface monitoring has advanced early warning ability; however, the existing instruments have problems, such as high cost, small measuring range, or difficult operation. Acoustic emission technology has the advantages of low cost, high sensitivity, and continuous real-time monitoring of large deformation, and has gradually developed into an optional method for landslide subsurface deformation monitoring. Thus, efficient landslide monitoring should comprehensively use multiple technologies to overcome the limitations of a single technology, and an integrated monitoring system becomes the state-of-the-art trend. The purpose of landslide monitoring is to provide a basis for decision-making of disaster early warning, thus, avoiding casualties and property losses through effective early warning efforts. In the field of early warning, regional meteorological and individual landslide early warning methods are gradually developed and improved. Deformation monitoring data are the main basis for landslide early warning, and experts analyze the deformation trend and sudden change characteristics. Different early warning levels could be triggered by the threshold values of velocity, acceleration, or other criteria. However, a landslide has complex dynamic mechanisms and individual differences; thus, the generic early warning model needs further exploration. The intelligent early warning model integrates machine learning technology with geological engineering analysis to improve the accuracy and automation level of landslide early warning.[Conclusions and Prospects] Deformation monitoring is essential in landslide prevention, and deformation data are the main basis for landslide early warning. Moreover, surface monitoring technologies have been widely used in the perception and decision-making process of landslides. Subsurface monitoring technologies can detect early precursors of landslide evolution to continuously improve early warning accuracy. Analyses show that early warning methods can be improved in the future by integrating machine learning models and geotechnical engineering.
Key wordslandslide disaster    surface deformation    subsurface deformation    comprehensive monitoring    early warning
收稿日期: 2022-10-17      出版日期: 2023-05-12
基金资助:安徽省重点研发计划项目(202104b11020021);清华大学合肥公共安全研究院开放课题(QHHFYKF202101);工业和信息化部2021年自然灾害防治技术装备工程化攻关专项(TC210H00L/47);自然资源部科技人才项目(121106000000180039-2201);中国地质调查局地质调查项目(DD20211364)
通讯作者: 袁宏永,教授,E-mail:hy-yuan@tsinghua.edu.cn     E-mail: hy-yuan@tsinghua.edu.cn
作者简介: 邓李政(1994—),男,博士后/助理研究员。
引用本文:   
邓李政, 袁宏永, 张鸣之, 陈建国. 滑坡变形监测预警技术研究进展[J]. 清华大学学报(自然科学版), 2023, 63(6): 849-864.
DENG Lizheng, YUAN Hongyong, ZHANG Mingzhi, CHEN Jianguo. Research progress on landslide deformation monitoring and early warning technology. Journal of Tsinghua University(Science and Technology), 2023, 63(6): 849-864.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2023.22.002  或          http://jst.tsinghuajournals.com/CN/Y2023/V63/I6/849
  
  
  
  
  
  
  
  
[1] PETLEY D. Global patterns of loss of life from landslides[J]. Geology, 2012, 40(10):927-930.
[2] VALKANIOTIS S, PAPATHANASSIOU G, GANAS A. Mapping an earthquake-induced landslide based on UAV imagery:Case study of the 2015 Okeanos landslide. Lefkada, Greece[J]. Engineering Geology, 2018, 245:141-152.
[3] HU X D, HU K H, ZHANG X P, et al. Quantitative assessment of the impact of earthquake-induced geohazards on natural landscapes in Jiuzhaigou Valley[J]. Journal of Mountain Science, 2019, 16(2):441-452.
[4] PERKINS S. Death toll from landslides vastly underestimated[J/OL].(2012-08-08)[2022-09-03]. Nature, 2012. DOI:10.1038/nature.2012.11140.
[5] 汪洋,牛小静,余锡平.水滑坡体产生的涌浪特性[J].清华大学学报(自然科学版), 2013, 53(1):42-47, 57. WANG Y, NIU X J, YU X P. Characteristics of waves generated by sub-aerial landslides[J]. Journal of Tsinghua University (Science and Technology), 2013, 53(1):42-47, 57.(in Chinese)
[6] 吴树仁,石菊松,王涛,等.滑坡风险评估理论与技术[M].北京:科学出版社, 2012. WU S R, SHI J S, WANG T, et al. Landslide risk assessment theory and technology[M]. Beijing:Science Press, 2012.(in Chinese)
[7] PERSICHILLO M G, BORDONI M, MEISINA C. The role of land use changes in the distribution of shallow landslides[J]. Science of the Total Environment, 2017, 574:924-937.
[8] CHUANG Y C, SHIU Y S. Relationship between landslides and mountain development:Integrating geospatial statistics and a new long-term database[J]. Science of the Total Environment, 2018, 622-623:1265-1276.
[9] GARIANO S L, GUZZETTI F. Landslides in a changing climate[J]. Earth-Science Reviews, 2016, 162:227-252.
[10] HAQUE U, BLUM P, DA SILVA P F, et al. Fatal landslides in Europe[J]. Landslides, 2016, 13(6):1545-1554.
[11] 刘传正,陈春利.中国地质灾害防治成效与问题对策[J].工程地质学报, 2020, 28(2):375-383. LIU C Z, CHEN C L. Achievements and countermeasures in risk reduction of geological disasters in China[J]. Journal of Engineering Geology, 2020, 28(2):375-383.(in Chinese)
[12] 李媛,杨旭东,尹春荣,等.中国地质灾害时空分布及防灾减灾[M].北京:地质出版社, 2020. LI Y, YANG X D, YIN C R, et al. Temporal and spatial distribution of geological hazards for disaster prevention and reduction in China[M]. Beijing:Geological Publishing House, 2020.(in Chinese)
[13] 崔鹏.中国山地灾害研究进展与未来应关注的科学问题[J].地理科学进展, 2014, 33(2):145-152. CUI P. Progress and prospects in research on mountain hazards in China[J]. Progress in Geography, 2014, 33(2):145-152.(in Chinese)
[14] 何朝阳.滑坡实时监测预警系统关键技术及其应用研究[D].成都:成都理工大学, 2020. HE C Y. Research on key technology and application of real-time monitoring and early warning system of landslide[D]. Chengdu:Chengdu University of Technology, 2020.(in Chinese)
[15] 徐红.地质灾害:由群防到技防:访自然资源部地质灾害防治技术指导中心首席科学家殷跃平[J].中国测绘, 2020(7):8-11. XU H. Geological disaster:From manual prevention to technical prevention:An intervieith Yin Yueping, the chief scientist of the Technical Guidance Center for Geological Disaster Prevention and Control of the Ministry of Natural Resources[J]. China Surveying and Mapping, 2020(7):8-11.(in Chinese)
[16] 裴强,雷焕珍,刘红帅.滑坡体与抗滑桩间接触应力的影响因素分析[J].清华大学学报(自然科学版), 2013, 53(8):1139-1144, 1154. PEI Q, LEI H Z, LIU H S. Influence factors of contact stress between landslide and anti-slide pile[J]. Journal of Tsinghua University (Science and Technology), 2013, 53(8):1139-1144, 1154.(in Chinese)
[17] GLENDINNING S, HUGHES P, HELM P, et al. Construction, management and maintenance of embankments used for road and rail infrastructure:Implications of weather induced pore water pressures[J]. Acta Geotechnica, 2014, 9(5):799-816.
[18] AGHAKOUCHAK A, HUNING L S, CHIANG F, et al. How do natural hazards cascade to cause disasters?[J]. Nature, 2018, 561(7724):458-460.
[19] INTRIERI E, GIGLI G, MUGNAI F, et al. Design and implementation of a landslide early warning system[J]. Engineering Geology, 2012, 147-148:124-136.
[20] UHLEMANN S, SMITH A, CHAMBERS J, et al. Assessment of ground-based monitoring techniques applied to landslide investigations[J]. Geomorphology, 2016, 253:438-451.
[21] 程刚,王振雪,李刚强,等.我国滑坡监测文献计量研究的可视化分析[J].中国安全科学学报, 2022, 32(7):172-179. CHENG G, WANG Z X, LI G Q, et al. Visual analysis of bibliometric research on landslide monitoring in China[J]. China Safety Science Journal, 2022, 32(7):172-179.(in Chinese)
[22] 侯圣山,李昂,陈亮,等.基于普适型仪器的滑坡监测预警初探:以甘肃兰州岷县三处滑坡为例[J].中国地质灾害与防治学报, 2020, 31(6):47-53. HOU S S, LI A, CHEN L, et al. Application of universal geo-hazard monitoring instruments in landslides and early warning of three landslides in Gansu Province:A case study in Minxian County and Lanzhou City of Gansu Province[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(6):47-53.(in Chinese)
[23] SASAHARA K, ITOH K, SAKAI N. Prediction method of the onset of landslides based on the stress-dilatancy relation against shallow landslides[M]//SASSA K, CANUTI P, YIN Y P. Landslide science for a safer geoenvironment. Cham, Germany:Springer, 2014.
[24] INTRIERI E, CARLÀ T, GIGLI G. Forecasting the time of failure of landslides at slope-scale:A literature review[J]. Earth-Science Reviews, 2019, 193:333-349.
[25] QI S W, YAN F Z, WANG S J, et al. Characteristics, mechanism and development tendency of deformation of Maoping landslide after commission of Geheyan reservoir on the Qingjiang River, Hubei Province, China[J]. Engineering Geology, 2006, 86(1):37-51.
[26] 秦四清,王思敬.斜坡滑动失稳演化的非线性机制与过程研究进展[J].地球与环境, 2005, 33(3):75-82. QIN S Q, WANG S J. Advances in research on nonlinear evolutionary mechanisms and process of instabilization of planar-slip slope[J]. Earth and Environment, 2005, 33(3):75-82.(in Chinese)
[27] TSAI H Y, TSAI C C, CHANG W C. Slope unit-based approach for assessing regional seismic landslide displacement for deep and shallow failure[J]. Engineering Geology, 2019, 248:124-139.
[28] PALMER J. Creeping earth could hold secret to deadly landslides[J]. Nature, 2017, 548(7668):384-386.
[29] 许强,汤明高,徐开祥,等.滑坡时空演化规律及预警预报研究[J].岩石力学与工程学报, 2008, 27(6):1104-1112. XU Q, TANG M G, XU K X, et al. Research on space-time evolution laws and early warning-prediction of landslides[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(6):1104-1112.(in Chinese)
[30] 贺可强,孙林娜,王思敬.滑坡位移分形参数Hurst指数及其在堆积层滑坡预报中的应用[J].岩石力学与工程学报, 2009, 28(6):1107-1115. HE K Q, SUN L N, WANG S J. Displacement fractal parameter Hurst index and its application to prediction of debris landslides[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(6):1107-1115.(in Chinese)
[31] 国家市场监督管理总局,国家标准化管理委员会.滑坡防治设计规范:GB/T 38509-2020[S].北京:中国标准出版社, 2020. State Administration of Market Supervision and Administration of the People's Republic of China, Standardization Administration of the People's Republic of China. Code for the design of landslide stabilization:GB/T 38509-2020[S]. Beijing:Standards Press of China, 2020.(in Chinese)
[32] 冯春,张军,李世海,等.滑坡变形监测技术的最新进展[J].中国地质灾害与防治学报, 2011, 22(1):11-16. FENG C, ZHANG J, LI S H, et al. A review of the latest development of landslide deformation monitoring techniques[J]. The Chinese Journal of Geological Hazard and Control, 2011, 22(1):11-16.(in Chinese)
[33] HILLEY G E, BURGMANN R, FERRETTI A, et al. Dynamics of slow-moving landslides from permanent scatterer analysis[J]. Science, 2004, 304(5679):1952-1955.
[34] ZENI L, PICARELLI L, AVOLIO B, et al. Brillouin optical time-domain analysis for geotechnical monitoring[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2015, 7(4):458-462.
[35] ZHU H H, WANG Z Y, SHI B, et al. Feasibility study of strain based stability evaluation of locally loaded slopes:Insights from physical and numerical modeling[J]. Engineering Geology, 2016, 208:39-50.
[36] FRATTINI P, CROSTA G B, ROSSINI M, et al. Activity and kinematic behaviour of deep-seated landslides from PS-InSAR displacement rate measurements[J]. Landslides, 2018, 15(6):1053-1070.
[37] ZAKI A, CHAI H K, RAZAK H A, et al. Monitoring and evaluating the stability of soil slopes:A review on various available methods and feasibility of acoustic emission technique[J]. Comptes Rendus Geoscience, 2014, 346(9-10):223-232.
[38] JONGMANS D, GARAMBOIS S. Geophysical investigation of landslides:A review[J]. Bulletin de la Société Géologique de France, 2007, 178(2):101-112.
[39] SYAHMI M Z, AZIZ W A W, ZULKARNAINI M A, et al. The movement detection on the landslide surface by using terrestrial laser scanning[C]//2011 IEEE Control and System Graduate Research Colloquium. Shah Alam, Malaysia, 2011.
[40] 徐进军,王海城,罗喻真,等.基于三维激光扫描的滑坡变形监测与数据处理[J].岩土力学, 2010, 31(7):2188-2191, 2196. XU J J, WANG H C, LUO Y Z, et al. Deformation monitoring and data processing of landslide based on 3D laser scanning[J]. Rock and Soil Mechanics, 2010, 31(7):2188-2191, 2196.(in Chinese)
[41] 李晓恩,周亮,苏奋振,等. InSAR技术在滑坡灾害中的应用研究进展[J].遥感学报, 2021, 25(2):614-629. LI X E, ZHOU L, SU F Z, et al. Application of InSAR technology in landslide hazard:Progress and prospects[J]. National Remote Sensing Bulletin, 2021, 25(2):614-629.(in Chinese)
[42] 李振洪,宋闯,余琛,等.卫星雷达遥感在滑坡灾害探测和监测中的应用:挑战与对策[J].武汉大学学报(信息科学版), 2019, 44(7):967-979. LI Z H, SONG C, YU C, et al. Application of satellite radar remote sensing to landslide detection and monitoring:Challenges and solutions[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7):967-979.(in Chinese)
[43] 朱建军,李志伟,胡俊. InSAR变形监测方法与研究进展[J].测绘学报, 2017, 46(10):1717-1733. ZHU J J, LI Z W, HU J. Research progress and methods of InSAR for deformation monitoring[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1717-1733.(in Chinese)
[44] 许强,朱星,李为乐,等."天-空-地"协同滑坡监测技术进展[J].测绘学报, 2022, 51(7):1416-1436. XU Q, ZHU X, LI W L, et al. Technical progress of space-air-ground collaborative monitoring of landslide[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7):1416-1436.(in Chinese)
[45] 胡友健,梁新美,许成功.论GPS变形监测技术的现状与发展趋势[J].测绘科学, 2006, 31(5):155-157. HU Y J, LIANG X M, XU C G. On the status quo and development trend of GPS technology for deformation monitoring[J]. Science of Surveying and Mapping, 2006, 31(5):155-157.(in Chinese)
[46] BARDI F, RASPINI F, CIAMPALINI A, et al. Space-borne and ground-based InSAR data integration:TheÅknes test site[J]. Remote Sensing, 2016, 8(3):237.
[47] PECORARO G, CALVELLO M, PICIULLO L. Monitoring strategies for local landslide early warning systems[J]. Landslides, 2019, 16(2):213-231.
[48] 侯训田,万毅宏,张娟秀,等.基于声发射技术的山体滑坡灾变预测试验研究[J].中外公路, 2014, 34(1):36-39. HOU X T, WAN Y H, ZHANG J X, et al. Experimental study on prediction of landslide disaster based on acoustic emission technology[J]. Journal of China&Foreign Highway, 2014, 34(1):36-39.(in Chinese)
[49] 王恭先.滑坡防治中的关键技术及其处理方法[J].岩石力学与工程学报, 2005, 24(21):3818-3827. WANG G X. Key technique in landslide control and its handling measures[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(21):3818-3827.(in Chinese)
[50] 翟艳龙.基于滑体位移的滑坡时间预测分析方法研究[D].成都:西南交通大学, 2016. ZHAI Y L. Study on time prediction analysis method for landslides based on landslide displacements[D]. Chengdu:Southwest Jiaotong University, 2016.(in Chinese)
[51] 李世海,冯春,周东,等.滑坡研究中的力学方法[M].北京:科学出版社, 2018. LI S H, FENG C, ZHOU D, et al. Mechanical methods for landslide research[M]. Beijing:Science Press, 2018.(in Chinese)
[52] 何满潮,李晨,宫伟力,等. NPR锚杆/索支护原理及大变形控制技术[J].岩石力学与工程学报, 2016, 35(8):1513-1529. HE M C, LI C, GONG W L, et al. Support principles of NPR bolts/cables and control techniques of large deformation[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(8):1513-1529.(in Chinese)
[53] YAMADA M, KUMAGAI H, MATSUSHI Y, et al. Dynamic landslide processes revealed by broadband seismic records[J]. Geophysical Research Letters, 2013, 40(12):2998-3002.
[54] 何满潮.滑坡地质灾害远程监测预报系统及其工程应用[J].岩石力学与工程学报, 2009, 28(6):1081-1090. HE M C. Real-time remote monitoring and forecasting system for geological disasters of landslides and its engineering application[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(6):1081-1090.(in Chinese)
[55] 申屠南瑛.地下位移测量方法及理论研究[D].杭州:浙江大学, 2013. SHENTU N Y. Research on methods and theories for measuring underground displacement[D]. Hangzhou:Zhejiang University, 2013.(in Chinese)
[56] MALEHMIR A, SOCCO L V, BASTANI M, et al. Near-surface geophysical characterization of areas prone to natural hazards:A review of the current and perspective on the future[J]. Advances in Geophysics, 2016, 57:51-146.
[57] SMETHURST J A, SMITH A, UHLEMANN S, et al. Current and future role of instrumentation and monitoring in the performance of transport infrastructure slopes[J]. Quarterly Journal of Engineering Geology and Hydrogeology, 2017, 50(3):271-286.
[58] PEI H F, JING J H, ZHANG S Q. Experimental study on a new FBG-based and Terfenol-D inclinometer for slope displacement monitoring[J]. Measurement, 2020, 151:107172.
[59] YAN Z, ZHENG D J, CHEN Z Y, et al. Research on a novel inclinometer based on distributed optical fiber strain and conjugate beam method[J]. Measurement, 2020, 153:107404.
[60] DIXON N, SMITH A, SPRIGGS M, et al. Stability monitoring of a rail slope using acoustic emission[J]. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 2015, 168(5):373-384.
[61] ABDOUN T, BENNETT V, DESROSIERS T, et al. Asset management and safety assessment of levees and earthen dams through comprehensive real-time field monitoring[J]. Geotechnical and Geological Engineering, 2013, 31(3):833-843.
[62] SMITH A, MOORE I D, DIXON N. Acoustic emission sensing of pipe-soil interaction:Full-scale pipelines subjected to differential ground movements[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(12):04019113.
[63] RUZZA G, GUERRIERO L, REVELLINO P, et al. A multi-module fixed inclinometer for continuous monitoring of landslides:Design, development, and laboratory testing[J]. Sensors, 2020, 20(11):3318.
[64] SMITH A. Quantification of slope deformation behaviour using acoustic emission monitoring[D]. Loughborough, UK:Loughborough University, 2015.
[65] STARK T D, CHOI H. Slope inclinometers for landslides[J]. Landslides, 2008, 5(3):339-350.
[66] 李果,王毅,吴铸,等.基于柔性测斜装置的滑坡大变形误差识别与修正[J].人民长江, 2016, 47(4):74-78. LI G, WANG Y, WU Z, et al. Recognition and correction of large deformation errors of landslide based on flexible inclinometer device[J]. Yangtze River, 2016, 47(4):74-78.(in Chinese)
[67] 唐亚明,张茂省,薛强,等.滑坡监测预警国内外研究现状及评述[J].地质论评, 2012, 58(3):533-541. TANG Y M, ZHANG M S, XUE Q, et al. Landslide monitoring and early-warning:An overview[J]. Geological Review, 2012, 58(3):533-541.(in Chinese)
[68] SMITH A, DIXON N, FOWMES G J. Early detection of first-time slope failures using acoustic emission measurements:Large-scale physical modelling[J]. Géotechnique, 2017, 67(2):138-152.
[69] DIXON N, SMITH A, FLINT J A, et al. An acoustic emission landslide early warning system for communities in low-income and middle-income countries[J]. Landslides, 2018, 15(8):1631-1644.
[70] 杨天鸿,张锋春,于庆磊,等.露天矿高陡边坡稳定性研究现状及发展趋势[J].岩土力学, 2011, 32(5):1437-1451, 1472. YANG T H, ZHNAG F C, YU Q L, et al. Research situation of open-pit mining high and steep slope stability and its developing trend[J]. Rock and Soil Mechanics, 2011, 32(5):1437-1451, 1472.(in Chinese)
[71] 谢和平,鞠杨,黎立云.基于能量耗散与释放原理的岩石强度与整体破坏准则[J].岩石力学与工程学报, 2005, 24(17):3003-3010. XIE H P, JU Y, LI L Y. Criteria for strength and structural failure of rocks based on energy dissipation and energy release principles[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(17):3003-3010.(in Chinese)
[72] MICHLMAYR G, COHEN D, OR D. Shear-induced force fluctuations and acoustic emissions in granular material[J]. Journal of Geophysical Research:Solid Earth, 2013, 118(12):6086-6098.
[73] CADMAN J D, GOODMAN R E. Landslide noise[J]. Science, 1967, 158(3805):1182-1184.
[74] MA K, TANG C A, LIANG Z Z, et al. Stability analysis and reinforcement evaluation of high-steep rock slope by microseismic monitoring[J]. Engineering Geology, 2017, 218:22-38.
[75] 易武,孟召平.岩质边坡声发射特征及失稳预报判据研究[J].岩土力学, 2007, 28(12):2529-2533, 2538. YI W, MENG Z P. Study on acoustic emission feature of rock slope and its instability forecast criterion[J]. Rock and Soil Mechanics, 2007, 28(12):2529-2533, 2538.(in Chinese)
[76] MICHLMAYR G, COHEN D, OR D. Sources and characteristics of acoustic emissions from mechanically stressed geologic granular media:A review[J]. Earth-Science Reviews, 2012, 112(3-4):97-114.
[77] 王卫,汪博浩,赵运天,等.胶结颗粒料力学行为与声发射信号特征[J].清华大学学报(自然科学版), 2019, 59(5):337-344. WANG W, WANG B H, ZHAO Y T, et al. Mechanical behavior and acoustic emission response characteristics of cemented granular materials[J]. Journal of Tsinghua University (Science and Technology), 2019, 59(5):337-344.(in Chinese)
[78] DIXON N, HILL R, KAVANAGH J. Acoustic emission monitoring of slope instability:Development of an active waveguide system[J]. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 2003, 156(2):83-95.
[79] LORD A E JR, FISK C L, KOERNER R M. Utilization of steel roads as AE waveguides[J]. Journal of the Geotechnical Engineering Division, 1982, 108(2):300-305.
[80] SPRIGGS M P. Quantification of acoustic emission from soils for predicting landslide failure[D]. Loughborough, UK:Loughborough University, 2005.
[81] SMITH A, DIXON N, MELDRUM P, et al. Acoustic emission monitoring of a soil slope:Comparisons with continuous deformation measurements[J]. Géotechnique Letters, 2014, 4(4):255-261.
[82] CODEGLIA D, DIXON N, FOWMES G J, et al. Analysis of acoustic emission patterns for monitoring of rock slope deformation mechanisms[J]. Engineering Geology, 2017, 219:21-31.
[83] CODEGLIA D, DIXON N, FOWMES G J, et al. Strategies for rock slope failure early warning using acoustic emission monitoring[J]. IOP Conference Series:Earth and Environmental Science, 2015, 26:012028.
[84] DIXON N, SPRIGGS M P, SMITH A, et al. Quantification of reactivated landslide behaviour using acoustic emission monitoring[J]. Landslides, 2015, 12(3):549-560.
[85] SMITH A, DIXON N. Acoustic emission behaviour of dense sands[J]. Géotechnique, 2019, 69(12):1107-1122.
[86] MIRGHASEMI A A, ROTHENBURG L, MATYAS E L. Influence of particle shape on engineering properties of assemblies of two-dimensional polygon-shaped particles[J]. Géotechnique, 2002, 52(3):209-217.
[87] CUI L, O'SULLIVAN C, O'NEILL S. An analysis of the triaxial apparatus using a mixed boundary three-dimensional discrete element model[J]. Géotechnique, 2007, 57(10):831-844.
[88] DENG L Z, YUAN H Y, CHEN J G, et al. Experimental investigation on progressive deformation of soil slope using acoustic emission monitoring[J]. Engineering Geology, 2019, 261:105295.
[89] DIXON N, SPRIGGS M. Quantification of slope displacement rates using acoustic emission monitoring[J]. Canadian Geotechnical Journal, 2007, 44(8):966-976.
[90] INGRAHAM M D, ISSEN K A, HOLCOMB D J. Use of acoustic emissions to investigate localization in high-porosity sandstone subjected to true triaxial stresses[J]. Acta Geotechnica, 2013, 8(6):645-663.
[91] 徐靓,程刚,朱鸿鹄.基于空天地内一体化的滑坡监测技术研究[J].激光与光电子学进展, 2021, 58(9):0900006. XU L, CHENG G, ZHU H H. Research review of landslide monitoring methods based on integration of space-air-ground-interior[J]. Laser&Optoelectronics Progress, 2021, 58(9):0900006.(in Chinese)
[92] 赵永红,王航,张琼,等.滑坡位移监测方法综述[J].地球物理学进展, 2018, 33(6):2606-2612. ZHAO Y H, WANG H, ZHANG Q, et al. Overview of landslide displacement monitoring methods[J]. Progress in Geophysics, 2018, 33(6):2606-2612.(in Chinese)
[93] 许强,董秀军,李为乐.基于天-空-地一体化的重大地质灾害隐患早期识别与监测预警[J].武汉大学学报(信息科学版), 2019, 44(7):957-966. XU Q, DONG X J, LI W L. Integrated space-air-ground early detection, monitoring and warning system for potential catastrophic geohazards[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7):957-966.(in Chinese)
[94] 张勤,白正伟,黄观文,等. GNSS滑坡监测预警技术进展[J].测绘学报, 2022, 51(10):1985-2000. ZHANG Q, BAI Z W, HUANG G W, et al. Review of GNSS landslide monitoring and early warning[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(10):1985-2000.(in Chinese)
[95] DENG L Z, SMITH A, DIXON N, et al. Automatic classification of landslide kinematics using acoustic emission measurements and machine learning[J]. Landslides, 2021, 18(8):2959-2974.
[96] DENG L Z, SMITH A, DIXON N, et al. Machine learning prediction of landslide deformation behaviour using acoustic emission and rainfall measurements[J]. Engineering Geology, 2021, 293:106315.
[97] 陈杨,邓李政,黄丽达,等.基于声发射监测的滑坡过程预警模型[J].清华大学学报(自然科学版), 2022, 62(6):1052-1058. CHEN Y, DENG L Z, HUANG L D, et al. Landslide early warning model based on acoustic emission monitoring[J]. Journal of Tsinghua University (Science and Technology), 2022, 62(6):1052-1058.(in Chinese)
[98] SMITH A, HEATHER-SMITH H J, DIXON N, et al. Acoustic emission generated by granular soil-steel structure interaction[J]. Géotechnique Letters, 2020, 10(2):119-127.
[99] 许强.对滑坡监测预警相关问题的认识与思考[J].工程地质学报, 2020, 28(2):360-374. XU Q. Understanding the landslide monitoring and early warning:Consideration to practical issues[J]. Journal of Engineering Geology, 2020, 28(2):360-374.(in Chinese)
[100] 张海艳,简文星,杨涛,等.降雨作用下三峡库区秭归谭家湾滑坡监测预警研究[J].安全与环境工程, 2022, 29(4):129-138. ZHANG H Y, JIAN, YANG T, et al. Monitoring and early warning of Tanjiawan landslide in Zigui, Three Gorges Reservoir Region under rainfall effect[J]. Safety and Environmental Engineering, 2022, 29(4):129-138.(in Chinese)
[101] CRUDEN D M, VARNES D J. Landslide types and processes[R]. Washington DC, USA:National Research Council, 1996:36-75.
[102] 徐峰,汪洋,杜娟,等.基于时间序列分析的滑坡位移预测模型研究[J].岩石力学与工程学报, 2011, 30(4):746-751. XU F, WNAG Y, DU J, et al. Study of displacement prediction model of landslide based on time series analysis[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(4):746-751.(in Chinese)
[103] 许强,彭大雷,何朝阳,等.突发型黄土滑坡监测预警理论方法研究:以甘肃黑方台为例[J].工程地质学报, 2020, 28(1):111-121. XU Q, PENG D L, HE C Y, et al. Theory and method of monitoring and early warning for sudden loess landslide:A case study at Heifangtai terrace[J]. Journal of Engineering Geology, 2020, 28(1):111-121.(in Chinese)
[104] 马娟,赵文祎,齐干,等.基于普适型监测的多参数预警研究:以三峡库区卡门子湾滑坡为例[J].西北地质, 2021, 54(3):259-269. MA J, ZHAO W Y, QI G, et al. Study on the multi-parameter early warning based on universal equipment:A case of Kamenziwan landslide in the Three Gorges Reservoir[J]. Northwestern Geology, 2021, 54(3):259-269.(in Chinese)
[105] 王凯,张少杰,马娟,等.大数据环境下滑坡宏观位移阶段空间分布规律及预警判据研究[J].地球科学进展, 2022, 37(10):1054-1065. WANG K, ZHANG S J, MA J, et al. Research on the spatial distribution law and early-warning criteria of landslide displacement stages in a big data environment[J]. Advances in Earth Science, 2022, 37(10):1054-1065.(in Chinese)
[106] 李阳春,刘黔云,李潇,等.基于机器学习的滑坡崩塌地质灾害气象风险预警研究[J].中国地质灾害与防治学报, 2021, 32(3):118-123. LI Y C, LIU Q Y, LI X, et al. Exploring early warning and forecasting of meteorological risk of landslide and rockfall induced by meteorological factors by the approach of machine learning[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(3):118-123.(in Chinese)
[107] ZHANG, SONG J, PENG J, et al. Landslides-oriented urban disaster resilience assessment:A case study in Shenzhen, China[J]. Science of the Total Environment, 2019, 661:95-106.
[108] 陈贺,李亚军,房锐,等.滑坡深部位移监测新技术及预警预报研究[J].岩石力学与工程学报, 2015, 34(S2):4063-4070. CHEN H, LI Y J, FANG R, et al. A novel technique for monitoring deep displacement and early-warning of landslide[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S2):4063-4070.(in Chinese)
[109] 辛鹏,胡乐,王涛,等.位移-应力协同分析在新近纪软岩质滑坡监测中的应用:以陕西宝鸡市北坡滑坡为例[J].地球学报, 2020, 41(1):37-48. XIN P, HU L, WANG T, et al. The application of displacement-stress synergetic analysis to landslide monitoring:A case study of Beipo landslides in Baoji City, Shaanxi Province[J]. Acta Geoscientica Sinica, 2020, 41(1):37-48.(in Chinese)
[110] 胡开颜,莫淳淯,张益华,等.基于自然电位法的滑坡监测实验研究[J].地球物理学报, 2021, 64(12):4582-4593. HU K Y, MO C Y, ZHANG Y H, et al. An experimental study on monitoring an indoor landslide based on self-potential method[J]. Chinese Journal of Geophysics, 2021, 64(12):4582-4593.(in Chinese)
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn