Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2023, Vol. 63 Issue (6): 888-899    DOI: 10.16511/j.cnki.qhdxxb.2023.22.004
  公共安全 本期目录 | 过刊浏览 | 高级检索 |
城市消防警情的空间异质性及影响因素
田逢时1,2, 孙占辉1, 郑昕1, 尹燕福1,3
1. 清华大学 工程物理系, 北京 100084;
2. 中国人民警察大学 智慧警务学院, 廊坊 065000;
3. 应急管理部 消防救援局, 北京 100054
Spatial heterogeneity and influencing factors of urban emergency services
TIAN Fengshi1,2, SUN Zhanhui1, ZHENG Xin1, YIN Yanfu1,3
1. Department of Engineering Physics, Tsinghua University, Beijing 100084, China;
2. School of Intelligence Policing, China People's Police University, Langfang 065000, China;
3. Fire and Rescue Department, Ministry of Emergency Management of the People's Republic of China, Beijing 100054, China
全文: PDF(16321 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 城市消防警情主要分为火警和非火警(抢险救援和社会救助),目前对火警的研究相对较多,而对救援救助警情的研究相对较少。该文采用探索性空间数据分析(ESDA),定量研究了城市消防警情的空间差异和集聚程度,确定了影响消防警情的社会因素,构建了多尺度地理加权回归(MGWR)模型,将其应用到城市消防警情的实证研究中,并采用多元线性回归、地理加权回归模型(GWR)进行了对比分析。研究结果表明:火警和救援救助在所研究城市都呈现出一定程度的空间聚集,老城区为火警的热点区域,而救援救助的热点分布相对更广。MGWR模型相较于传统的多元线性回归和经典的GWR模型有着更好的效果,在火警、救援救助和总警情中拟合优度均超过了0.8,且其残差平方和、修正后的Akaike信息准则(AICc)数值最低。通过GWR模型和MGWR模型的带宽对比分析发现,不同社会因素对消防警情的影响存在空间异质性。该研究还发现救援救助与火警在该城市的空间分布及影响因素的空间异质性上具有显著差异。在未来的消防工作中,考虑救援救助对整体警情的影响具有重要意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
田逢时
孙占辉
郑昕
尹燕福
关键词 消防安全火灾救援救助空间分析多尺度地理加权回归    
Abstract:[Objective] Urban emergency services are mainly divided into fire suppression and technical rescues. Relatively more studies have been conducted on fire suppression, whereas relatively fewer studies have focused on technical rescues. Thus, this study aims to map the spatial distribution of fire suppression and technical rescues on a city scale and build their connections quantitatively to the human population and mobility. The findings are expected to help in the planning of urban emergency services to follow the major task change from fire suppression to technical rescues.[Methods] The global spatial autocorrelation of fire suppression, technical rescues, and their totality — whole emergency services — was assessed using global spatial autocorrelation analysis Moran's I, whereas the local components were indexed with local indicators of spatial association and Getis-Ord G*i. The human population and mobility were modeled through the point of interest (POI) and visitor throughput, respectively. Through the stepwise regression method, five broad categories of POI data (14 minor categories of POI) of the highest sensitivities were selected from the available 30 categories of POI. Their associations with fire suppression, technical rescues, and the whole emergency services were established using the multiscale geographically weighted regression (MGWR) model.[Results] Both fire suppression and technical rescues were found to have a certain degree of spatial clustering, but some differences were noted in the spatial distribution of different emergency service types. Old towns were the concentrated hot spots for fire suppression, whereas the formation of additional clusters of technical rescues was extensively distributed; thus, more multiregional linkage and targeted prevention were required for technical rescues than fire suppression. The POI data of residential premises, office premises (such as office buildings, and public administration and public service institutions), industrial premises (such as industrial parks and mines), educational premises (such as schools, scientific research institutions, and training institutions), and commercial premises (such as supermarkets, convenience stores, home appliance stores, digital device stores, beauty salons), and visitor throughput were closely connected to emergency services. The applied MGWR model overtook both the traditional multiple linear regression and conventional GWR, with the goodness of fit R2 exceeding 0.8 for fire suppression, technical rescues, and overall emergency services. The residual sum of squares and the corrected Akaike information criterion (AICc) had the smallest values in the MGWR model. The correlation of the local visitor throughput and POIs (e.g., residential buildings, offices, and retail stores) to local fire suppressions were approximately spatially uniform. By contrast, the connections of other POIs (e.g., offices, schools, and industrial parks) to fire suppression and technical rescues varied across the present city domain.[Conclusions] The findings indicate that targeted prevention should be employed in the present city's emergency services according to the local POI distribution and should be steered to technical rescues which have become the main part of the overall emergency services. This study provides an important reference for future emergency preparedness and response, regional prevention work, and location planning of new fire stations.
Key wordsfire safety    fire disaster    technical rescue    spatial analysis    multiscale geographically weighted regression (MGWR)
收稿日期: 2022-10-08      出版日期: 2023-05-12
基金资助:国家重点研发计划项目(2021YFC1523503,2020YFC0833402);中国人民警察大学科研重点专项课题(ZDZX202005)
通讯作者: 郑昕,副研究员,E-mail:zhengxin@tsinghua.edu.cn;尹燕福,消防一级指挥长,E-mail:793050852@qq.com     E-mail: zhengxin@tsinghua.edu.cn;793050852@qq.com
作者简介: 田逢时(1987—),男,博士研究生。
引用本文:   
田逢时, 孙占辉, 郑昕, 尹燕福. 城市消防警情的空间异质性及影响因素[J]. 清华大学学报(自然科学版), 2023, 63(6): 888-899.
TIAN Fengshi, SUN Zhanhui, ZHENG Xin, YIN Yanfu. Spatial heterogeneity and influencing factors of urban emergency services. Journal of Tsinghua University(Science and Technology), 2023, 63(6): 888-899.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2023.22.004  或          http://jst.tsinghuajournals.com/CN/Y2023/V63/I6/888
  
  
  
  
  
  
  
  
  
[1] PÁNTYA P. Fire, rescue, disaster management. Experiences from different countries[J]. AARMS, 2018, 17(2):77-94.
[2] PÁNTYA P, KUK E. Fire service responses and the need for foreign language knowledge[J]. Journal of Environmental Protection, Safety, Education and Management, 2016, 4(7):26-29.
[3] 伍晗,张欣,张琰.火警事件统计系统中英比较分析[J].消防科学与技术, 2021, 40(2):259-262. WU H, ZHANG X, ZHANG Y. Comparison and analysis of fire incident statistics system between China and Britain[J]. Fire Science and Technology, 2021, 40(2):259-262.(in Chinese)
[4] 应急管理部消防救援局.中国消防救援年鉴:2021年卷[M].北京:应急管理出版社, 2021. Fire and Rescue Department, Ministry of Emergency Management of the People's Republic of China. China fire and rescue yearbook:2021 volume[M]. Beijing:Emergency Management Press, 2021.(in Chinese)
[5] XIA Z L, HAO L, CHEN Y H. An integrated spatial clustering analysis method for identifying urban fire risk locations in a network-constrained environment:A case study in Nanjing, China[J]. International Journal of Geo-Information, 2017, 6(11):370.
[6] 何敏,王军,江琴.中国重大事故灾害时空分布特征及危险性评价[J].安徽师范大学学报(自然科学版), 2021, 44(2):160-168. HE M, WANG J, JIANG Q. The temporal-spatial distributions and risk assessment of major accident disasters in China[J]. Journal of Anhui Normal University (Natural Science), 2021, 44(2):160-168.(in Chinese)
[7] 杨尧,李功权.火灾发生率空间分异及影响因素研究[J].中国安全生产科学技术, 2018, 14(9):158-163. YANG Y, LI G Q. Study on spatial differentiation and influencing factors of fire incidence[J]. Journal of Safety Science and Technology, 2018, 14(9):158-163.(in Chinese)
[8] 傅永财,徐波.中国近年火灾的空间聚集趋势分析[J].消防科学与技术, 2012, 31(4):411-413. FU Y C, XU B. Spatial cluster analysis of Chinese fire statistic[J]. Fire Science and Technology, 2012, 31(4):411-413.(in Chinese)
[9] 喻彦,侯心一,高宁,等.上海市2013-2015年重特大交通事故及其伤亡信息的流行特征分析[J].中华疾病控制杂志, 2017, 21(11):1152-1156. YU Y, HOU X Y, GAO N, et al. Epidemic analysis of serious traffic accidents and casualties in Shanghai from 2013 to 2015[J]. Chinese Journal of Disease Control&Prevention, 2017, 21(11):1152-1156.(in Chinese)
[10] 向珍君,计玉容,于海玲,等.北京市120院前医疗急救道路交通伤害的空间自相关分析[J].医学信息学杂志, 2022, 43(7):65-68. XIANG Z J, JI Y R, YU H L, et al. Spatial autocorrelation analysis of road traffic injuries of pre-hospital medical emergency in Beijing[J]. Journal of Medical Informatics, 2022, 43(7):65-68.(in Chinese)
[11] 李云,翟欣欣,胡雅丽,等.城市道路交通事故的时空特征与规划成因:以深圳市南山区为例[J].深圳大学学报(理工版), 2018, 35(2):197-205. LI Y, ZHAI, HU Y L, et al. An analysis on the relationship between the spatial-temporal characteristics of road traffic accident and the urban planning in the mega-city:A case study of Nanshan District in Shenzhen[J]. Journal of Shenzhen University (Science&Engineering), 2018, 35(2):197-205.(in Chinese)
[12] 陆化普,罗圣西,李瑞敏.基于GIS分析的深圳市道路交通事故空间分布特征研究[J].中国公路学报, 2019, 32(8):156-164. LU H P, LUO S X, LI R M. GIS-based spatial patterns analysis of urban road traffic crashes in Shenzhen[J]. China Journal of Highway and Transport, 2019, 32(8):156-164.(in Chinese)
[13] JENNINGS C R. Social and economic characteristics as determinants of residential fire risk in urban neighborhoods:A review of the literature[J]. Fire Safety Journal, 2013, 62:13-19.
[14] ŠPATENKOVÁ O, VIRRANTAUS K. Discovering spatio-temporal relationships in the distribution of building fires[J]. Fire Safety Journal, 2013, 62:49-63.
[15] 赵晓旭.融合多源时空数据的城市火灾危险性评估[J].测绘通报, 2020(5):101-106. ZHAO. Urban fire hazard assessment based on multi-source spatiotemporal data[J]. Bulletin of Surveying and Mapping, 2020(5):101-106.(in Chinese)
[16] COSTAFREDA-AUMEDES S, COMAS C, VEGA-GARCIA C. Human-caused fire occurrence modelling in perspective:A review[J]. International Journal of Wildland Fire, 2017, 26(12):983-998.
[17] LIU D L, XU Z S, WANG Z Y, et al. Regional evaluation of fire apparatus requirements for petrol stations based on travel times[J]. Process Safety and Environmental Protection, 2020, 135:350-363.
[18] 祝明明,罗静,余文昌,等.城市POI火灾风险评估与消防设施布局优化研究:以武汉市主城区为例[J].地域研究与开发, 2018, 37(4):86-91. ZHU M M, LUO J, YU W C, et al. Urban fire risk evaluation and location optimization of fire station based on the POI:A case study of main urban region in Wuhan[J]. Areal Research and Development, 2018, 37(4):86-91.(in Chinese)
[19] 疏学明,颜峻,胡俊,等.基于Bayes网络的建筑火灾风险评估模型[J].清华大学学报(自然科学版), 2020, 60(4):321-327. SHU X M, YAN J, HU J, et al. Risk assessment model for building fires based on a Bayesian network[J]. Journal of Tsinghua University (Science and Technology), 2020, 60(4):321-327.(in Chinese)
[20] 姜昀呈,孙立坚,肖琨,等.城市消防站选址布局优化研究[J].测绘科学, 2021, 46(9):207-217. JIANG Y C, SUN L J, XIAO K, et al. Optimization for location and layout of urban fire station[J]. Science of Surveying and Mapping, 2021, 46(9):207-217.(in Chinese)
[21] KRISP J M, JOLMA A, VIRRANTAUS K. Using explorative spatial analysis to improve fire and rescue services[M]//OOSTEROM P, ZLATANOVA, S, FENDEL E, et al. Geo-information for disaster management. Amsterdam, The Netherlands:Springer, 2005.
[22] HU J, SHU X M, XIE S T, et al. Socioeconomic determinants of urban fire risk:A city-wide analysis of 283 Chinese cities from 2013 to 2016[J]. Fire Safety Journal, 2019, 110:102890.
[23] SINGH P P, SABNANI C S, KAPSE V S. Hotspot analysis of structure fires in urban agglomeration:A case of Nagpur City, India[J]. Fire, 2021, 4(3):38.
[24] 徐智邦,周亮,蓝婷,等.基于POI数据的巨型城市消防站空间优化:以北京市五环内区域为例[J].地理科学进展, 2018, 37(4):535-546. XU Z B, ZHOU L, LAN T, et al. Spatial optimization of mega-city fire station distribution based on Point of Interest data:A case study within the 5th Ring Road in Beijing[J]. Progress in Geography, 2018, 37(4):535-546.(in Chinese)
[25] DONG X M, LI Y, PAN Y L, et al. Study on urban fire station planning based on fire risk assessment and GIS technology[J]. Procedia Engineering, 2018, 211:124-130.
[26] ZHANG, YAO J, SILA-NOWICKA K, et al. Urban fire dynamics and its association with urban growth:Evidence from Nanjing, China[J]. ISPRS International Journal of Geo-Information, 2020, 9(4):218.
[27] ZHANG, YAO J, SILA-NOVICKA K. Exploring spatiotemporal dynamics of urban fires:A case of Nanjing, China[J]. ISPRS International Journal of Geo-Information, 2018, 7(1):7.
[28] 李刚,马海霞,刘英杰,等.基于指数函数和的老旧电梯综合风险评价方法[J].中国安全科学学报, 2016, 26(8):69-73. LI G, MA H X, LIU Y J, et al. Method for assessing risk involved in old elevator operation based on sum of exponential functions[J]. China Safety Science Journal, 2016, 26(8):69-73.(in Chinese)
[29] 黄华兵,王先伟,柳林.城市暴雨内涝综述:特征、机理、数据与方法[J].地理科学进展, 2021, 40(6):1048-1059. HUANG H B, WANG, LIU L. A review on urban pluvial floods:Characteristics, mechanisms, data, and research methods[J]. Progress in Geography, 2021, 40(6):1048-1059.(in Chinese)
[30] 陈立新.消防救援队伍抗洪抢险排涝的实战探索与思考[J].消防科学与技术, 2022, 41(7):982-985. CHEN L X. Practical exploration and thinking of the fire rescue team in flood fighting, emergency rescue and waterlogging drainage[J]. Fire Science and Technology, 2022, 41(7):982-985.(in Chinese)
[31] 柳林,宋广文,周素红,等.城市空间结构对惠州市中心城区交通事故影响的时间差异分析[J].地理科学, 2015, 35(1):75-83. LIU L, SONG G W, ZHOU S H, et al. Temporally impact of urban structure on city traffic accidents in Huizhou[J]. Scientia Geographica Sinica, 2015, 35(1):75-83.(in Chinese)
[32] 庞哲,谢波,肖扬谋,等.城市蔓延对交通事故的影响研究:以武汉市为例[J].现代城市研究, 2020(11):1-9. PANG Z, XIE B, XIAO Y M, et al. The impact factor of urban sprawl on traffic crashes:A case study of Wuhan city[J]. Modern Urban Research, 2020(11):1-9.(in Chinese)
[33] 郑依玲,谢波,南贤淑,等.城市土地利用对交通事故的影响因素与作用机制研究:以武汉市为例[J].现代城市研究, 2020(2):42-49. ZHENG Y L, XIE B, NAN X S, et al. The impact factor and mechanism of urban land use on traffic accidents:A case study of Wuhan City[J]. Modern Urban Research, 2020(2):42-49.(in Chinese)
[34] WANG H J, YAO H X, KIFER D, et al. Non-stationary model for crime rate inference using modern urban data[J]. IEEE Transactions on Big Data, 2019, 5(2):180-194.
[35] WANG H J. Ubran computing with mobility data:A unified approach[D]. University Park, USA:The Pennsylvania State University, 2018.
[36] 黄颙昊,杨新苗,岳锦涛.基于多尺度地理加权回归模型的城市道路骑行流量分析[J].清华大学学报(自然科学版), 2022, 62(7):1132-1141. HUANG Y H, YANG X M, YUE J T. Urban street bicycle flow analysis based on multi-scale geographically weighted regression model[J]. Journal of Tsinghua University (Science and Technology), 2022, 62(7):1132-1141.(in Chinese)
[37] ANSELIN L, SYABRI I, KHO Y. GeoDa:An introduction to spatial data analysis[M]//FISCHER M M, GETIC A. Handbook of applied spatial analysis. Berlin, Germany:Springer, 2010:73-89.
[38] KORTER G O, OLUBUSOYE O E, SALISU A A. Spatial analysis of road traffic crashes in Oyo state of Nigeria[J]. Journal of Sustainable Development, 2014, 7(4):151-164.
[39] ANSELIN L. Local indicators of spatial association:LISA[J]. Geographical Analysis, 1995, 27(2):93-115.
[40] GETIS A, ORD J K. The analysis of spatial association by use of distance statistics[M]//ANSELIN L, REY S J. Perspectives on spatial data analysis. Berlin, Germany:Springer, 2010.
[41] DRUKKER D M, PENG H, PRUCHA I R, et al. Creating and managing spatial-weighting matrices with the spmat command[J]. The Stata Journal, 2013, 13(2):242-286.
[42] FOTHERINGHAM A S, BRUNSDON C, CHARLTON M. Quantitative geography:Perspectives on spatial data analysis[M]. London, UK:SAGE, 2000.
[43] 沈体雁,于瀚辰,周麟,等.北京市二手住宅价格影响机制:基于多尺度地理加权回归模型(MGWR)的研究[J].经济地理, 2020, 40(3):75-83. SHEN T Y, YU H C, ZHOU L, et al. On hedonic price of second-hand houses in Beijing based on multi-scale geographically weighted regression:Scale law of spatial heterogeneity[J]. Economic Geography, 2020, 40(3):75-83.(in Chinese)
[44] FOTHERINGHAM A S, YANG W B, KANG W. Multiscale geographically weighted regression (MGWR)[J]. Annals of the American Association of Geographers, 2017, 107(6):1247-1265.
[45] YU H C, FOTHERINGHAM A S, LI Z Q, et al. Inference in multiscale geographically weighted regression[J]. Geographical Analysis, 2020, 52(1):87-106.
[46] BRUNSDON C, FOTHERINGHAM A S, CHARLTON M E. Geographically weighted regression:A method for exploring spatial nonstationarity[J]. Geographical Analysis, 1996, 28(4):281-298.
[47] BOWMAN A W. An alternative method of cross-validation for the smoothing of density estimates[J]. Biometrika, 1984, 71(2):353-360.
[48] FOTHERINGHAM A S, BRUNSDON C, CHARLTON M. Geographically weighted regression:The analysis of spatially varying relationships[M]. New York, USA:John Wiley&Sons, 2003.
[1] 贺胜, 疏学明, 胡俊, 张雷, 张伽, 张嘉乐, 周扬. 基于消防大数据的电气火灾风险预测预警方法[J]. 清华大学学报(自然科学版), 2024, 64(3): 478-491.
[2] 赵金龙, 李浩源, 张清元, 杨钧晖, 田畅, 疏学明. 用于液体火灾的环保泡沫制备方法与关键参数[J]. 清华大学学报(自然科学版), 2024, 64(3): 502-508.
[3] 贾旭宏, 汤婧, 马俊豪, 田威, 张晓宇, 代尚沛, 丁思婕. 低气压富氧环境对典型织物燃烧特性的影响[J]. 清华大学学报(自然科学版), 2024, 64(1): 164-172.
[4] 李开远, 袁宏永, 陈涛, 黄丽达. 基于TDLAS的光学探针式初期火灾探测系统[J]. 清华大学学报(自然科学版), 2023, 63(6): 910-916.
[5] 岳顺禹, 龙增, 仇培云, 钟茂华, 华福才. 独头隧道火灾全尺寸实验研究[J]. 清华大学学报(自然科学版), 2023, 63(6): 917-925.
[6] 姜文宇, 王飞, 苏国锋, 乔禹铭, 李鑫, 权威. 基于元胞自动机的以火灭火动态建模方法[J]. 清华大学学报(自然科学版), 2023, 63(6): 926-933.
[7] 胡俊, 疏学明, 解学才, 颜峻, 张雷. 基于定量风险评估的建筑火灾保险费率[J]. 清华大学学报(自然科学版), 2023, 63(5): 775-782.
[8] 刘智远, 李行, 周汛. 送风环境下地铁车厢火灾温度分布[J]. 清华大学学报(自然科学版), 2023, 63(10): 1529-1536.
[9] 黄颙昊, 杨新苗, 岳锦涛. 基于多尺度地理加权回归模型的城市道路骑行流量分析[J]. 清华大学学报(自然科学版), 2022, 62(7): 1132-1141.
[10] 孙潇潇, 黄弘, 赵金龙, 章翔, 宋广恒. 有坡度下点源持续泄漏溢油流淌火扩散特性实验研究[J]. 清华大学学报(自然科学版), 2022, 62(6): 994-999.
[11] 张晶, 陈涛, 黄丽达, 苏国锋, 孙占辉, 陈建国. 接触不良引发发光连接的动态变化[J]. 清华大学学报(自然科学版), 2022, 62(6): 1000-1009.
[12] 王冠宁, 陈涛, 米文忠, 梁晓良, 王汝栋. 基于凸壳理论的监控摄像头部分遮挡场景下火焰定位方法[J]. 清华大学学报(自然科学版), 2022, 62(2): 277-284.
[13] 陈俊沣, 程辉航, 魏旋, 温亲玮, 吴乐, 刘畅, 钟茂华. 隧道火灾全尺寸实验中温度测量误差[J]. 清华大学学报(自然科学版), 2022, 62(10): 1618-1625.
[14] 刘畅, 钟茂华, 林鹏, 龚远平, 田向亮, 阴彬, 龙增, 杨宇轩. 水利水电工程分岔型隧道全尺寸火灾实验研究[J]. 清华大学学报(自然科学版), 2022, 62(1): 1-12.
[15] 田逢时, 薛冉, 郑昕, 康青春. 超大型油罐火灾分区灭火方案及实验验证[J]. 清华大学学报(自然科学版), 2022, 62(1): 13-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn