Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2023, Vol. 63 Issue (6): 980-986    DOI: 10.16511/j.cnki.qhdxxb.2023.22.011
  公共安全 本期目录 | 过刊浏览 | 高级检索 |
基于卷积神经网络的γ放射性核素识别方法
杜晓闯1, 梁漫春1, 黎岢1, 俞彦成1, 刘欣2, 汪向伟3, 王汝栋1, 张国杰1, 付起1
1. 清华大学 工程物理系, 北京 100084;
2. 北京永新医疗设备有限公司, 北京 102206;
3. 中国人民解放军 91515部队, 三亚 572016
A gamma radionuclide identification method based on convolutional neural networks
DU Xiaochuang1, LIANG Manchun1, LI Ke1, YU Yancheng1, LIU Xin2, WANG Xiangwei3, WANG Rudong1, ZHANG Guojie1, FU Qi1
1. Department of Engineering Physics, Tsinghua University, Beijing 100084, China;
2. Beijing Yongxin Medical Equipment Co., Ltd., Beijing 102206, China;
3. No. 91515 Unit of PLA, Sanya 572016, China
全文: PDF(4192 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 快速、准确的放射性核素识别可有效地对放射性危险源进行及时的监测预警,对保护人们远离放射源的威胁具有重要意义。该文基于卷积神经网络研究了放射性核素γ能谱的识别。通过溴化镧能谱仪采集16种放射性核素的γ能谱数据,并通过改变放射性核素γ能谱的计数和能谱漂移程度,创建生成大量单核素和双核素γ能谱训练数据,利用自搭建的卷积神经网络开展放射性核素识别模型训练。实验采集其中9种核素及其双核素的混合能谱对核素识别模型开展验证,结果表明:在剂量率约为0.5 μSv/h、测量采集时间为60 s时,模型的识别准确率可达92.63%,满足在低剂量率下对放射性核素进行快速识别筛查的需求。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杜晓闯
梁漫春
黎岢
俞彦成
刘欣
汪向伟
王汝栋
张国杰
付起
关键词 放射性核素识别γ能谱卷积神经网络核安全    
Abstract:[Objective] Rapid and reliable radionuclide identification can enable rapid monitoring and early warning of radioactive sources, which is essential for safeguarding people from the threat of radioactive materials. However, distinctive peak matching algorithms are not suitable for low gross count gamma-ray spectrum identification, especially when there are overlapped peaks in a spectrum. To improve the identification performance for low gross count gamma-ray spectra, this study creates a radionuclide identification model based on convolutional neural networks that can better identify the spectra obtained at low dose rates.[Methods] Firstly, a gamma-ray spectrum dataset was created. The gamma-ray spectra of 16 radionuclides were obtained at a dose rate of about 0.5μSv/h using a LaBr3 spectrometer with measuring energy ranging from 30 to 3000keV, a resolution of about 5% at 662 keV, and a measured acquisition time about 100s. Secondly, a training dataset was developed. To train the model, a huge number of gamma-ray spectra of 16 radionuclides and their two mixed radionuclides were generated. We created 1100 data points for each type of gamma-ray spectra by varying the gross count and energy drift. Thus, a total of 149 600 gamma-ray spectrum data were generated. Among them, 80% of the data were randomly selected for model training and the remaining 20% for model crossvalidation. Finally, the convolutional neural networks was constructed. The random searching approach was used to search hyperparameters of the model using the Keras-Tuner tool for determining the ideal architecture of convolutional neural networks. The convolutional layer filter numbers were 96, 128, 32, 256, and 256 in order. The activation function for convolutional layers was the rectified linear unit. Furthermore, the neuron number of the hidden layer was 480, and the learning rate was 0.000 029 6. At last, the spectra labels were encoded using the one-hot format, and the softmax function was used as the activation function for the model's output layer. The model parameters were optimized using the Adam optimizer by employing crossentropy as the loss function. We obtained the radionuclide identification model after 100 epochs of training.[Results] To estimate the identification performance of the model under the condition that a dose rate was about 0.5 μSv/h and the measurement acquisition time was up to 120 s, we acquired 1 333 gamma-ray spectra from nine single radionuclides and their two mixed radionuclides using the LaBr3 spectrometer. The nine radionuclides were 241Am, 133Ba, 137Cs, 131I, 226Ra, 232Th, 57Co, 235U, and 60Co. The model was used to identify these spectra and the results showed that the model's accuracy was 90.11% with the acquisition time of 30s, and the accuracy was increased to 92.63% with the acquisition time of 60s.[Conclusions] In this study, we propose a radionuclide identification model based on convolutional neural networks. Analyses show that the model can effectively identify various radionuclides' gamma-ray spectra in a short period of time at a low dose rate.
Key wordsradionuclide identification    gamma-ray spectrum    convolutional neural networks    nuclear safety
收稿日期: 2022-11-21      出版日期: 2023-05-12
基金资助:国防科工局核设施治理科研项目(〔2018〕1521)
通讯作者: 梁漫春,副研究员,E-mail:lmc@tsinghua.edu.cn     E-mail: lmc@tsinghua.edu.cn
作者简介: 杜晓闯(1998—),男,硕士研究生。
引用本文:   
杜晓闯, 梁漫春, 黎岢, 俞彦成, 刘欣, 汪向伟, 王汝栋, 张国杰, 付起. 基于卷积神经网络的γ放射性核素识别方法[J]. 清华大学学报(自然科学版), 2023, 63(6): 980-986.
DU Xiaochuang, LIANG Manchun, LI Ke, YU Yancheng, LIU Xin, WANG Xiangwei, WANG Rudong, ZHANG Guojie, FU Qi. A gamma radionuclide identification method based on convolutional neural networks. Journal of Tsinghua University(Science and Technology), 2023, 63(6): 980-986.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2023.22.011  或          http://jst.tsinghuajournals.com/CN/Y2023/V63/I6/980
  
  
  
  
  
  
  
  
  
  
[1] 周平坤.核辐射对人体的生物学危害及医学防护基本原则[J].首都医科大学学报, 2011, 32(2):171-176. ZHOU P K. The detriment of nuclear radiation on human and the protection principal[J]. Journal of Capital Medical University, 2011, 32(2):171-176.(in Chinese)
[2] LI K, CHEN W H, LIANG M C, et al. A simple data assimilation method to improve atmospheric dispersion based on Lagrangian puff model[J]. Nuclear Engineering and Technology, 2021, 53(7):2377-2386.
[3] LIKAR A, VIDMAR T. A peak-search method based on spectrum convolution[J]. Journal of Physics D:Applied Physics, 2003, 36(15):1903-1909.
[4] 任俊松,张江梅,王坤朋.基于SVD和SVM的核素识别算法[J].兵工自动化, 2017, 36(5):50-53. REN J S, ZHANG J M, WANG K P. Radioactive radionuclide identification method based on SVD and SVM[J]. Ordnance Industry Automation, 2017, 36(5):50-53.(in Chinese)
[5] CHEN L, WEI Y X. Nuclide identification algorithm based on K-L transform and neural networks[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 598(2):450-453.
[6] 刘灏霖,姚远程,张江梅,等.基于K-SVD的γ能谱特征提取及核素识别[J].电脑知识与技术, 2018, 14(2):177-179. LIU H L, YAO Y C, ZHANG J M, et al. γ Spectrum feature extraction and radionuclide identification by K-SVD[J]. Computer Knowledge and Technology, 2018, 14(2):177-179.(in Chinese)
[7] HE J P, TANG X B, GONG P, et al. Rapid radionuclide identification algorithm based on the discrete cosine transform and BP neural network[J]. Annals of Nuclear Energy, 2018, 112:1-8.
[8] 王瑶,刘志明,万亚平,等.基于长短时记忆神经网络的能谱核素识别方法[J].强激光与粒子束, 2020, 32(10):106001. WANG Y, LIU Z M, WAN Y P, et al. Energy spectrum radionuclide recognition method based on long short-term memory neural network[J]. High Power Laser and Particle Beams, 2020, 32(10):106001.(in Chinese)
[9] 胡浩行,张江梅,王坤朋,等.卷积神经网络在复杂核素识别中的应用[J].传感器与微系统, 2019, 38(10):154-156, 160. HU H H, ZHANG J M, WANG K P, et al. Application of convolutional neural networks in identification of complex radionuclides[J]. Transducer and Microsystem Technologies, 2019, 38(10):154-156, 160.(in Chinese)
[10] LIANG D J, GONG P, TANG X B, et al. Rapid radionuclide identification algorithm based on convolutional neural network[J]. Annals of Nuclear Energy, 2019, 133:483-490.
[11] IAEA. Identification of radioactive sources and devices:Reference manual[M]. Vienna:IAEA, 2011.
[12] 盖荣丽,蔡建荣,王诗宇,等.卷积神经网络在图像识别中的应用研究综述[J].小型微型计算机系统, 2021, 42(9):1980-1984. GAI R L, CAI J R, WANG S Y, et al. Research review on image recognition based on deep learning[J]. Journal of Chinese Computer Systems, 2021, 42(9):1980-1984.(in Chinese)
[13] 杜晓闯,涂红兵,黎岢,等.基于径向基神经网络仿真γ能谱模板库的核素识别方法[J].清华大学学报(自然科学版), 2021, 61(11):1308-1315. DU X C, TU H B, LI K, et al. Radionuclide identification method based on a gamma-spectra template library simulated by radial basis function neural networks[J]. Journal of Tsinghua University (Science&Technology), 2021, 61(11):1308-1315.(in Chinese)
[1] 杨波, 邱雷, 吴书. 异质图神经网络协同过滤模型[J]. 清华大学学报(自然科学版), 2023, 63(9): 1339-1349.
[2] 陈波, 张华, 陈永灿, 李永龙, 熊劲松. 基于特征增强的水工结构裂缝语义分割方法[J]. 清华大学学报(自然科学版), 2023, 63(7): 1135-1143.
[3] 邓青, 张博, 李宜豪, 周亮, 周正青, 蒋慧灵, 高扬. 基于级联CNN的疏散场景中人群数量估计模型[J]. 清华大学学报(自然科学版), 2023, 63(1): 146-152.
[4] 王晓萌, 管志斌, 辛伟, 王嘉捷. 基于深度卷积神经网络的源代码缺陷检测方法[J]. 清华大学学报(自然科学版), 2021, 61(11): 1267-1272.
[5] 杜晓闯, 涂红兵, 黎岢, 张洁, 王康, 刘鹤敏, 梁漫春, 汪向伟. 基于径向基神经网络仿真γ能谱模板库的核素识别方法[J]. 清华大学学报(自然科学版), 2021, 61(11): 1308-1315.
[6] 韩坤, 潘海为, 张伟, 边晓菲, 陈春伶, 何舒宁. 基于多模态医学图像的Alzheimer病分类方法[J]. 清华大学学报(自然科学版), 2020, 60(8): 664-671,682.
[7] 孙博文, 张鹏, 成茗宇, 李新童, 李祺. 基于代码图像增强的恶意代码检测方法[J]. 清华大学学报(自然科学版), 2020, 60(5): 386-392.
[8] 林鹏, 魏鹏程, 樊启祥, 陈闻起. 基于CNN模型的施工现场典型安全隐患数据学习[J]. 清华大学学报(自然科学版), 2019, 59(8): 628-634.
[9] 梁杰, 陈嘉豪, 张雪芹, 周悦, 林家骏. 基于独热编码和卷积神经网络的异常检测[J]. 清华大学学报(自然科学版), 2019, 59(7): 523-529.
[10] 张思聪, 谢晓尧, 徐洋. 基于dCNN的入侵检测方法[J]. 清华大学学报(自然科学版), 2019, 59(1): 44-52.
[11] 刘琼, 李宗贤, 孙富春, 田永鸿, 曾炜. 基于深度信念卷积神经网络的图像识别与分类[J]. 清华大学学报(自然科学版), 2018, 58(9): 781-787.
[12] 芦效峰, 张胜飞, 伊胜伟. 基于CNN和RNN的自由文本击键模式持续身份认证[J]. 清华大学学报(自然科学版), 2018, 58(12): 1072-1078.
[13] 李晓飞, 许庆, 熊辉, 王建强, 李克强. 基于候选区域选择及深度网络模型的骑车人识别[J]. 清华大学学报(自然科学版), 2017, 57(5): 491-496.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn