Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2023, Vol. 63 Issue (6): 882-887    DOI: 10.16511/j.cnki.qhdxxb.2023.22.014
  公共安全 本期目录 | 过刊浏览 | 高级检索 |
基于数值模拟和机器学习的风场快速重构方法
李聪健, 高航, 刘奕
清华大学 工程物理系, 北京 100084
Fast reconstruction of a wind field based on numerical simulation and machine learning
LI Congjian, GAO Hang, LIU Yi
Department of Engineering Physics, Tsinghua University, Beijing 100084, China
全文: PDF(14181 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 近年来受大风天气影响,树倒墙塌、高空坠物、广告牌散落等情况时有发生,严重影响社区居民安全,迫切需要识别出大风天气下社区内重点危险区域并加以防范。该文以北京市石景山区某社区风场为例进行场景建模,利用数值模拟与机器学习寻找社区特征点,完成特征点风速数据到风场数据的预测。以10个特征点数据预测6 681个点的风场数据为例,基于7 917个训练风场、2 026个测试风场的模型训练测试结果表明:东西方向1 m/s以上速度的预测值平均相对误差为5.8%,南北方向1 m/s以上速度的预测值平均相对误差为6.2%。采用该方法可以快速获得满足精度要求的社区背景风场以指导社区风险防范、应急决策与救援,对于保障社区安全具有重要意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李聪健
高航
刘奕
关键词 数值模拟神经网络k-means聚类流场重构    
Abstract:[Objective] In recent years, under the influence of strong wind, trees and walls collapse, objects fall, and other situations occur from time to time, which seriously affect the safety of community residents. In traditional emergency rescue, the background wind field at the disaster site is unknown, and the accuracy of accident development assessment is affected. In the case of fire, gas leakage, strong wind, and other disasters, decision-makers and rescue teams cannot accurately locate the dangerous areas in the community because of their inability to rapidly obtain accurate background wind field information, which affects the accuracy of the judgment of the disaster scope and development trend. Key dangerous areas in the community under strong wind need to be identified.[Methods] In this study, the wind field of a community in the Shijingshan District of Beijing was taken as an example to conduct scene modeling. To generate the database of the community wind field, the wind field was generated by OpenFOAM, and a shell script was used for a batch of simulations. The speed at the feature points obtained by k-means clustering served as the input, and the wind field served as the output to train the neural network. The selected community feature points could represent the wind field information of the community. The feature point selection and neural network modeling were continuously optimized based on the training and prediction results until the accuracy met the requirements.[Results] Taking the field data of 6 681 points predicted by 10 feature points as an example, the model training test results of 7917 training wind fields and 2026 testing wind fields were as follows: The average relative errors of the predicted values of speeds above 1m/s in the x- and y-axes were 5.8% and 6.2%, respectively. Among them, the average relative error of model prediction between 1m/s and 2m/s is 11.9%, for model prediction between 2m/s and 5m/s was 6.0%, for model prediction between 5m/s and 10m/s was 3.2%, and for model prediction above 10m/s was 3.5%.[Conclusions] Compared with the numerical simulation technology, the neural network model can rapidly generate the background wind field of the community based on the field location data. Compared with the time of the numerical simulation, the time of the neural network model to generate a field is significantly reduced. Unlike the existing neural network model, the proposed model takes actual community points as the feature points for model training and prediction, enabling the installation of sensors and the prediction of real-time wind fields. Therefore, people can organize risk prevention and emergency rescue according to the background wind field, which is of great significance for maintaining community safety.
Key wordsnumerical simulation    neural network    k-means clustering    reconstruction of the flow field
收稿日期: 2022-12-02      出版日期: 2023-05-12
基金资助:国家重点研发计划(2022YFC2602400);国家自然科学基金项目(72174102)
通讯作者: 刘奕,副研究员,E-mail:liuyi@tsinghua.edu.cn     E-mail: liuyi@tsinghua.edu.cn
作者简介: 李聪健(1998—),男,硕士研究生。
引用本文:   
李聪健, 高航, 刘奕. 基于数值模拟和机器学习的风场快速重构方法[J]. 清华大学学报(自然科学版), 2023, 63(6): 882-887.
LI Congjian, GAO Hang, LIU Yi. Fast reconstruction of a wind field based on numerical simulation and machine learning. Journal of Tsinghua University(Science and Technology), 2023, 63(6): 882-887.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2023.22.014  或          http://jst.tsinghuajournals.com/CN/Y2023/V63/I6/882
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] PATTERSON E B. Poverty, income inequality, and community crime rates[J]. Criminology, 1991, 29(4):755-776.
[2] 贾楠,陈永强,郭旦怀,等.社区风险防范的三角形模型构建及应用[J].系统工程理论与实践, 2019, 39(11):2855-2864. JIA N, CHEN Y Q, GUO D H, et al. Construction and application of triangle model for community risk prevention[J]. Systems Engineering:Theory&Practice, 2019, 39(11):2855-2864.(in Chinese)
[3] YI F, YU Z W, CHEN H H, et al. Cyber-physical-social collaborative sensing:From single space to cross-space[J]. Frontiers of Computer Science, 2018, 12(4):609-622.
[4] KAPUCU N. Disaster and emergency management systems in urban areas[J]. Cities, 2012, 29(S1):S41-S49.
[5] 刘奕,张宇栋,张辉,等.面向2035年的灾害事故智慧应急科技发展战略研究[J].中国工程科学, 2021, 23(4):117-125. LIU Y, ZHANG Y D, ZHANG H, et al. Development strategy of smart emergency-response technology for disasters and accidents by 2035[J]. Strategic Study of CAE, 2021, 23(4):117-125.(in Chinese)
[6] GHOREYSHI M, JIRASEK A, MILLER T, et al. Implementation and verification of gust modeling in an open-source flow solver[J]. Aerospace Science and Technology, 2019, 92:777-789.
[7] LING J L, KURZAWSKI A, TEMPLETON J. Reynolds averaged turbulence modelling using deep neural networks with embedded invariance[J]. Journal of Fluid Mechanics, 2016, 807:155-166.
[8] LIU Y, WANG Y Q, DENG L, et al. A novel in situ compression method for CFD data based on generative adversarial network[J]. Journal of Visualization, 2019, 22(1):95-108.
[9] LI K, KOU J Q, ZHANG. Deep neural network for unsteady aerodynamic and aeroelastic modeling across multiple Mach numbers[J]. Nonlinear Dynamics, 2019, 96(3):2157-2177.
[10] YU J, HESTHAVEN J S. Flowfield reconstruction method using artificial neural network[J]. AIAA Journal, 2019, 57(2):482-498.
[11] BHATNAGAR S, AFSHAR Y, PAN S W, et al. Prediction of aerodynamic flow fields using convolutional neural networks[J]. Computational Mechanics, 2019, 64(2):525-545.
[12] SEKAR V, JIANG Q H, SHU C, et al. Fast flow field prediction over airfoils using deep learning approach[J]. Physics of Fluids, 2019, 31(5):057103.
[13] WU H Z, LIU X J, AN W, et al. A deep learning approach for efficiently and accurately evaluating the flow field of supercritical airfoils[J]. Computers&Fluids, 2020, 198:104393.
[14] MEMARZADEH G, KEYNIA F. A new short-term wind speed forecasting method based on fine-tuned LSTM neural network and optimal input sets[J]. Energy Conversion and Management, 2020, 213:112824.
[15] CHEN Y, KOPP G A, SURRY D. Prediction of pressure coefficients on roofs of low buildings using artificial neural networks[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2003, 91(3):423-441.
[16] BRE F, GIMENEZ J M, FACHINOTTI V D. Prediction of wind pressure coefficients on building surfaces using artificial neural networks[J]. Energy and Buildings, 2018, 158:1429-1441.
[17] YAN Y T, DONG X Q, LI J M. Experimental study of methane diffusion in soil for an underground gas pipe leak[J]. Journal of Natural Gas Science and Engineering, 2015, 27:82-89.
[18] LI N, LIU Y Q, LI L, et al. Numerical simulation of wind turbine wake based on extended k-epsilon turbulence model coupling with actuator disc considering nacelle and tower[J]. IET Renewable Power Generation, 2020, 14(18):3834-3842.
[19] GHOBADI P, NASROLLAHI N. Assessment of pollutant dispersion in deep street canyons under different source positions:Numerical simulation[J]. Urban Climate, 2021, 40:101027.
[1] 张雪芹, 刘岗, 王智能, 罗飞, 吴建华. 基于多特征融合和深度学习的微观扩散预测[J]. 清华大学学报(自然科学版), 2024, 64(4): 688-699.
[2] 李玉, 王相钦, 闵敬春. 蛇形管内燃油变物性流动换热特性数值模拟[J]. 清华大学学报(自然科学版), 2024, 64(2): 337-345.
[3] 张名芳, 李桂林, 吴初娜, 王力, 佟良昊. 基于轻量型空间特征编码网络的驾驶人注视区域估计算法[J]. 清华大学学报(自然科学版), 2024, 64(1): 44-54.
[4] 石云姣, 赵宁波, 郑洪涛. 进气畸变对重型燃气轮机燃压缸流动特性影响[J]. 清华大学学报(自然科学版), 2024, 64(1): 90-98.
[5] 杨波, 邱雷, 吴书. 异质图神经网络协同过滤模型[J]. 清华大学学报(自然科学版), 2023, 63(9): 1339-1349.
[6] 付雯, 温浩, 黄俊珲, 孙镔轩, 陈嘉杰, 陈武, 冯跃, 段星光. 基于非线性动力学模型补偿的水下机械臂自适应滑模控制[J]. 清华大学学报(自然科学版), 2023, 63(7): 1068-1077.
[7] 黄贲, 康飞, 唐玉. 基于目标检测的混凝土坝裂缝实时检测方法[J]. 清华大学学报(自然科学版), 2023, 63(7): 1078-1086.
[8] 陈波, 张华, 陈永灿, 李永龙, 熊劲松. 基于特征增强的水工结构裂缝语义分割方法[J]. 清华大学学报(自然科学版), 2023, 63(7): 1135-1143.
[9] 代鑫, 黄弘, 汲欣愉, 王巍. 基于机器学习的城市暴雨内涝时空快速预测模型[J]. 清华大学学报(自然科学版), 2023, 63(6): 865-873.
[10] 杜晓闯, 梁漫春, 黎岢, 俞彦成, 刘欣, 汪向伟, 王汝栋, 张国杰, 付起. 基于卷积神经网络的γ放射性核素识别方法[J]. 清华大学学报(自然科学版), 2023, 63(6): 980-986.
[11] 钟茂华, 胡鹏, 陈俊沣, 程辉航, 吴乐, 魏旋. 顶部多点竖向排烟下地铁隧道烟气控制研究[J]. 清华大学学报(自然科学版), 2023, 63(5): 754-764.
[12] 安健, 陈宇轩, 苏星宇, 周华, 任祝寅. 机器学习在湍流燃烧及发动机中的应用与展望[J]. 清华大学学报(自然科学版), 2023, 63(4): 462-472.
[13] 孙继昊, 罗绍文, 赵宁波, 杨慧玲, 郑洪涛. 甲烷/空气燃烧NOx排放数值模型对比[J]. 清华大学学报(自然科学版), 2023, 63(4): 623-632.
[14] 孙逸凡, 朱炜, 吴玉新, 祁海鹰. Gao-Yong湍流模型对边界层转捩的适用性研究[J]. 清华大学学报(自然科学版), 2023, 63(4): 642-648.
[15] 孙继昊, 宋颖, 石云姣, 赵宁波, 郑洪涛. 天然气同轴分级燃烧室污染物生成及预测[J]. 清华大学学报(自然科学版), 2023, 63(4): 649-659.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn