Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2023, Vol. 63 Issue (5): 783-791    DOI: 10.16511/j.cnki.qhdxxb.2023.22.015
  公共安全 本期目录 | 过刊浏览 | 高级检索 |
背板对聚甲基丙烯酸甲酯向下火蔓延的影响
李大玉1, 赵坤1, 周魁斌1, 孙鹏辉1, 武金模2
1. 南京工业大学 安全科学与工程学院, 南京 211816;
2. 清华大学 合肥公共安全研究院, 合肥 230601
Effects of the backboard on downward flame spread over polymethyl methacrylate
LI Dayu1, ZHAO Kun1, ZHOU Kuibin1, SUN Penghui1, WU Jinmo2
1. College of Safety Science and Engineering, Nanjing Tech University, Nanjing 211816, China;
2. Hefei Institute for Public Safety Research, Tsinghua University, Hefei 230601, China
全文: PDF(7567 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 聚甲基丙烯酸甲酯(PMMA)是主要的建筑装饰材料之一,一旦被点燃可能会导致严重的火灾事故。目前针对背板对PMMA向下火蔓延影响的实验研究较少。该文利用自主设计搭建的实验装置研究了背板对2 mm和5 mm厚PMMA向下火蔓延的影响。实验结果表明:背板对固体可燃物向下火蔓延存在抑制作用,具体表现为更大的热解前缘角度及更小的平均火焰高度、质量损失速率和火蔓延速率,该抑制作用在2 mm厚度PMMA上更加明显。基于有无背板工况下的传热模型,结合燃烧稳定阶段样品热解区域形态参数,对质量损失速率及接收总热量反馈预测值大小进行对比,发现背板的存在会导致样品接收总热量反馈减少,进而导致更小的质量损失速率和火蔓延速率。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李大玉
赵坤
周魁斌
孙鹏辉
武金模
关键词 向下火蔓延热解前缘火蔓延速率质量损失速率传热    
Abstract:Polymethyl methacrylate (PMMA) is one of the main architectural decoration materials and is widely used in different types of buildings. Once ignited, the flammable PMMA can cause serious building fire accidents. In building decoration, PMMA is used alone or attached to the noninflammable wall. Consequently, the PMMA could burn in a free condition or under the wall effect in a building fire. However, experimental studies on the effect of the backboard on PMMA downward flame spread are rare. In this study, the effect of the backboard was experimentally studied on the downward flame spread for PMMA of 2- and 5-mm thicknesses using a self-designed experimental setup. The experimental setup holds a noninflammable backboard that can be dismantled for the downward flame spread of PMMA in the free condition. Experimental observation showed significant changes in the flame color and pyrolysis front shape with and without the backboard. As compared to the free condition, the airflow induced by the entrainment of the burning flame might cause a flow boundary layer across the backboard, which helped to qualitatively explain the difference in the flame color and the pyrolysis front shape between the two thickness conditions. The experimental measurements also showed that the backboard had a negative effect on the downward flame spread rate, particularly for the 2-mm thick PMMA, which was characterized by an increase in the pyrolysis front angle and a drop in the average flame height, mass loss rate, and flame spread rate. The heat transfer analyses for the steady flame spread under the backboard and free conditions were conducted using the geometrical feature of the pyrolysis zone, and thus a comparison between the two conditions in terms of total heat feedback was conducted. There are four main conclusions. (1) The backboard caused a darker flame of PMMA and a blue flame of the 2-mm thick PMMA, as compared to those in the free condition. (2) Under the backboard effect, the pyrolysis front showed a "-" shape when the 2-mm thick PMMA burned in a steady stage, while the 5-mm thick PMMA held the pyrolysis front of an inverted "V" shape with a larger front angle than that in the free condition. (3) During the steady stage of flame spread, the backboard reduced the mass loss and flame spread rates by decreasing the total heat feedback to the pyrolysis zone. (4) The reductive effect was more significant on the mass loss rate and the flame spread for the 2-mm thick PMMA than the 5-mm thick PMMA because the former could be fully located in the flow boundary layer, whereas the latter partially located in the flow boundary layer in terms of the thickness. In summary, the qualitative and quantitative analyses of the experimental results show that the backboard can slow down the downward flame spread rate by restricting the air entrainment and reducing the heat feedback, and the inhibiting effect is more obvious for the thinner PMMA.
Key wordsdownward flame spread    pyrolysis front    flame spread rate    mass loss rate    heat transfer
收稿日期: 2022-08-25      出版日期: 2023-04-23
基金资助:国家自然科学基金面上项目(51876088);安徽省自然科学基金面上项目(1908085ME165);江苏省第十六批“六大人才高峰”高层次人才项目(XNYQC-005)
通讯作者: 周魁斌,教授,E-mail:kbzhou@njtech.edu.cn      E-mail: kbzhou@njtech.edu.cn
作者简介: 李大玉(1998—),男,硕士研究生。
引用本文:   
李大玉, 赵坤, 周魁斌, 孙鹏辉, 武金模. 背板对聚甲基丙烯酸甲酯向下火蔓延的影响[J]. 清华大学学报(自然科学版), 2023, 63(5): 783-791.
LI Dayu, ZHAO Kun, ZHOU Kuibin, SUN Penghui, WU Jinmo. Effects of the backboard on downward flame spread over polymethyl methacrylate. Journal of Tsinghua University(Science and Technology), 2023, 63(5): 783-791.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2023.22.015  或          http://jst.tsinghuajournals.com/CN/Y2023/V63/I5/783
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] 黄新杰, 刘伟, 陈功建, 等. 不同放置角度的建筑装饰材料PMMA的火焰蔓延特性[J]. 过程工程学报, 2018, 18(3):454-460. HUANG X J, LIU W, CHEN G J, et al. Flame spread characteristics over building decoration material of PMMA with different placed angles[J]. The Chinese Journal of Process Engineering, 2018, 18(3):454-460. (in Chinese)
[2] CARMIGNANI L, BHATTACHARJEE S. Burn angle and its implications on flame spread rate, mass burning rate, and fuel temperature for downward flame spread over thin PMMA[J]. Combustion Science and Technology, 2020, 192(8):1617-1632.
[3] DELZEIT T, CARMIGNANI L, MATSUOKA T, et al. Influence of edge propagation on downward flame spread over three-dimensional PMMA samples[J]. Proceedings of the Combustion Institute, 2019, 37(3):3203-3209.
[4] KOROBEINICHEV O P, KARPOV A I, BOLKISEV A A, et al. An experimental and numerical study of thermal and chemical structure of downward flame spread over PMMA surface in still air[J]. Proceedings of the Combustion Institute, 2019, 37(3):4017-4024.
[5] GAO S, ZHU G Q, GAO Y J, et al. Experimental study on width effects on downward flame spread over thin PMMA under limited distance condition[J]. Case Studies in Thermal Engineering, 2019, 13:100382.
[6] LANGE G, CARMIGNANI L, BHATTACHARJEE S. Thermal radiation measurements of downward spreading flames[J]. Applied Thermal Engineering, 2019, 160:114022.
[7] 罗圣峰, 谢启源, 张辉, 等. 引入熔融糊状区的PMMA逆流火蔓延数值模拟[J]. 清华大学学报(自然科学版), 2020, 60(12):1039-1046. LUO S F, XIE Q Y, ZHANG H, et al. Numerical simulation of opposed-flow flame spread of PMMA with melting mushy zone[J]. Journal of Tsinghua University (Science and Technology), 2020, 60(12):1039-1046. (in Chinese)
[8] DE RIS J N. Spread of a laminar diffusion flame[J]. Symposium (International) on Combustion, 1969, 12(1):241-252.
[9] FERNANDEZ-PELLO A C, WILLIAMS F A. Laminar flame spread over PMMA surfaces[J]. Symposium (International) on Combustion, 1975, 15(1):217-231.
[10] AYANI M B, ESFAHANI J A, MEHRABIAN R. Downward flame spread over PMMA sheets in quiescent air:Experimental and theoretical studies[J]. Fire Safety Journal, 2006, 41(2):164-169.
[11] MAMOURIAN M, ESFAHANI J A, AYANI M B. The effect of the solid fuel dimensions on the downward flame spread[J]. Kuwait Journal of Science & Engineering, 2009, 36(2):1-9.
[12] GONG J H, ZHOU X D, DENG Z H, et al. Influences of low atmospheric pressure on downward flame spread over thick PMMA slabs at different altitudes[J]. International Journal of Heat and Mass Transfer, 2013, 61:191-200.
[13] GONG J H, ZHOU X D, LI J, et al. Effect of finite dimension on downward flame spread over PMMA slabs:Experimental and theoretical study[J]. International Journal of Heat and Mass Transfer, 2015, 91:225-234.
[14] PAN R L, ZHU G Q, ZHANG G W, et al. Experimental study and heat transfer analysis of downward flame spread over PMMA under the effect of wall spacing[J]. Journal of Thermal Analysis and Calorimetry, 2019, 138(2):1711-1722.
[15] ZHU H, GAO Y J, PAN R L, et al. Spacing effects on downward flame spread over thin PMMA slabs[J]. Case Studies in Thermal Engineering, 2019, 13:100370.
[16] ZHAO K, ZHOU X D, YANG L Z, et al. Width effects on downward flame spread over poly(methyl methacrylate) sheets[J]. Journal of Fire Sciences, 2015, 33(1):69-84.
[17] ZHAO K, ZHOU X D, LIU X Q, et al. Prediction of three-dimensional downward flame spread characteristics over poly(methyl methacrylate) slabs in different pressure environments[J]. Materials, 2016, 9(11):948-962.
[18] XIE Q Y, LUO S F, DA L J. Effects of backwall on inner thermal structure in opposed-flow horizontal flame spread of thick PMMA panel[J]. Applied Thermal Engineering, 2021, 185:116424.
[19] 冯瑞, 田润和, 陈科位, 等. 低气压环境对固体燃烧特性影响的实验研究[J]. 清华大学学报(自然科学版), 2019, 59(2):111-121. FENG R, TIAN R H, CHENG K W, et al. Experimental study of the effect of low pressures on solid fuel combustion characteristics[J]. Journal of Tsinghua University (Science and Technology), 2019, 59(2):111-121. (in Chinese)
[20] HOSSAIN S, WICHMAN I S, MILLER F J, et al. Opposed flow flame spread over thermally thick solid fuels:Buoyant flow suppression, stretch rate theory, and the regressive burning regime[J]. Combustion and Flame, 2020, 219:57-69.
[21] 杜伟, 程海涛, 邹彪, 等. 基于点状火源的秸秆火焰蔓延及燃烧特性[J]. 清华大学学报(自然科学版), 2022, 62(6):1088-1093. DU W, CHENG H T, ZOU B, et al. Flame spread and combustion characteristics of straw bales from a point fire source[J]. Journal of Tsinghua University (Science and Technology), 2022, 62(6):1088-1093. (in Chinese)
[22] 柳爱静, 李开源, 姚勇征, 等. 宽度变化对聚苯乙烯保温材料水平火蔓延预热角度的影响[J]. 中南大学学报(自然科学版), 2017, 48(6):1420-1424. LIU A J, LI K Y, YAO Y Z, et al. Effect of width on pyrolysis angle during flame spread over horizontal extruded polystyrene (XPS) surface[J]. Journal of Central South University (Science and Technology), 2017, 48(6):1420-1424. (in Chinese)
[23] FERNANDEZ-PELLO A C, HIRANO T. Controlling mechanisms of flame spread[J]. Combustion Science and Technology, 1983, 32(1-4):1-31.
[1] 胡钰文, 闫晓, 宫厚军, 王艳林, 周磊. 耦合传热并联矩形通道流动不稳定性数值研究[J]. 清华大学学报(自然科学版), 2023, 63(8): 1257-1263.
[2] 刘倩, 桂南, 杨星团, 屠基元, 姜胜耀. 竖直通道内饱和蒸汽凝结换热数值模拟[J]. 清华大学学报(自然科学版), 2023, 63(8): 1273-1281.
[3] 操凯, 李亚运, 付明, 郭贤, 刘小勇, 宋舆涵. 基于暖体假人的消防员降温背心热传递及降温性能分析[J]. 清华大学学报(自然科学版), 2023, 63(10): 1548-1557.
[4] 刘梓标, 林俊江, 李和鑫, 黄天娇, 徐文彬, 庄依杰. 考虑电池产热的多孔介质复合相变材料的传热性能[J]. 清华大学学报(自然科学版), 2022, 62(6): 1037-1043.
[5] 杜伟, 程海涛, 邹彪, 任伟达, 朱晓康, 李聪. 基于点状火源的秸秆火焰蔓延及燃烧特性[J]. 清华大学学报(自然科学版), 2022, 62(6): 1088-1093.
[6] 温荣福, 杜宾港, 杨思艳, 刘渊博, 李启迅, 程雅琦, 兰忠, 马学虎. 蒸气冷凝传热强化研究进展[J]. 清华大学学报(自然科学版), 2021, 61(12): 1353-1370.
[7] 顾君苹, 刘琦, 吴玉新, 王庆功, 吕俊复. 过冷盐溶液流动沸腾传热预测关联式[J]. 清华大学学报(自然科学版), 2021, 61(12): 1397-1404.
[8] 吴锦超, 仇诗涵, 李沐恒, 韦兴, 陈秉耀, 应葵. 基于Kalman滤波和生物传热模型的实时磁共振温度成像精度提升[J]. 清华大学学报(自然科学版), 2020, 60(4): 334-340.
[9] 沈志杰, 闵敬春, 段江菲. 入口空气参数分布对薄膜式全热交换器性能影响的数值研究[J]. 清华大学学报(自然科学版), 2020, 60(11): 958-966.
[10] 王振川, 胥蕊娜, 熊超, 姜培学. 超临界压力CO2竖直管内传热恶化抑制实验[J]. 清华大学学报(自然科学版), 2018, 58(12): 1101-1106.
[11] 肖红, 曹志伟, 冯英杰, 杨志义, 朱建敏. 基于MELCOR程序的AP1000核电厂安全壳瞬态事故分析[J]. 清华大学学报(自然科学版), 2018, 58(11): 1029-1036.
[12] 马喜振, 贾海军, 刘洋. 竖直管道内强迫循环下非凝性气体对蒸汽冷凝的影响[J]. 清华大学学报(自然科学版), 2017, 57(5): 530-536.
[13] 孙钰淳, 程嘉, 路益嘉, 侯悦民, 季林红. 静电卡盘与晶圆之间稀薄气体传热的影响因素[J]. 清华大学学报(自然科学版), 2015, 55(7): 756-760.
[14] 袁杨, 李祥东, 屠基元. 纳米流体沸腾模型中某些物理参数的理论探讨[J]. 清华大学学报(自然科学版), 2015, 55(7): 815-820.
[15] 郭红仙,李翔宇,程晓辉. 能源桩热响应测试的模拟及适用性评价[J]. 清华大学学报(自然科学版), 2015, 55(1): 14-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn